Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Morphol ; 283(5): 637-652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174531

RESUMO

Skin sense organs, cutaneous sensilla, are a well-known feature of the integument of squamate reptiles and particularly geckos. They vary widely in morphology among species and are thought to be mechanosensitive, associated with prey capture and handling, tail autotomy and placement of the adhesive toepads in pad-bearing species. Some authors suggest that they may also sense abiotic environmental features, such as temperature or humidity. Here, we describe the morphology and distribution of cutaneous sensilla among body regions of nine Australian gecko species, in four genera. We hypothesised that if sensilla morphology was distinct, or sensilla density high, around the mouth, on the tail and on extremities, sensilla were likely used for these direct tactile functions. We found that sensilla morphology was uniform among body regions within species, but varied among species, while sensilla densities varied among species and body regions. In all species studied, sensilla density was highest on the labials and the dorsal tail scales and low on the feet, head and body, providing strong support for the hypothesis that sensilla serve tactile mechanoreceptive functions for prey capture and handling and for predator avoidance, but not for toepad placement. We suggest sensilla density may be explained by mechanoreception, whereas structure may be influenced by other factors.


Assuntos
Lagartos , Animais , Austrália , Lagartos/anatomia & histologia , Microscopia Eletrônica de Varredura , Sensilas , Pele , Cauda
2.
Acta Biomater ; 21: 109-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25772496

RESUMO

Geckos, and specifically their feet, have attracted significant attention in recent times with the focus centred around their remarkable adhesional properties. Little attention however has been dedicated to the other remaining regions of the lizard body. In this paper we present preliminary investigations into a number of notable interfacial properties of the gecko skin focusing on solid and aqueous interactions. We show that the skin of the box-patterned gecko (Lucasium sp.) consists of dome shaped scales arranged in a hexagonal patterning. The scales comprise of spinules (hairs), from several hundred nanometres to several microns in length, with a sub-micron spacing and a small radius of curvature typically from 10 to 20 nm. This micro and nano structure of the skin exhibited ultralow adhesion with contaminating particles. The topography also provides a superhydrophobic, anti-wetting barrier which can self clean by the action of low velocity rolling or impacting droplets of various size ranges from microns to several millimetres. Water droplets which are sufficiently small (10-100 µm) can easily access valleys between the scales for efficient self-cleaning and due to their dimensions can self-propel off the surface enhancing their mobility and cleaning effect. In addition, we demonstrate that the gecko skin has an antibacterial action where Gram-negative bacteria (Porphyromonas gingivalis) are killed when exposed to the surface however eukaryotic cell compatibility (with human stem cells) is demonstrated. The multifunctional features of the gecko skin provide a potential natural template for man-made applications where specific control of liquid, solid and biological contacts is required.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis , Lagartos , Molhabilidade , Animais , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA