Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(12): 4729-4735, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31951063

RESUMO

The conjugation of hydrophilic low-fouling polymers to therapeutic molecules and particles is an effective approach to improving their aqueous stability, solubility, and pharmacokinetics. Recent concerns over the immunogenicity of poly(ethylene glycol) has highlighted the importance of identifying alternative low fouling polymers. Now, a new class of synthetic water-soluble homo-fluoropolymers are reported with a sulfoxide side-chain structure. The incorporation of fluorine enables direct imaging of the homopolymer by 19 F MRI, negating the need for additional synthetic steps to attach an imaging moiety. These self-reporting fluoropolymers show outstanding imaging sensitivity and remarkable hydrophilicity, and as such are a new class of low-fouling polymer for bioconjugation and in vivo tracking.


Assuntos
Polietilenoglicóis/síntese química , Sulfóxidos/química , Flúor/química , Halogenação , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Polietilenoglicóis/química , Solubilidade , Água/química
2.
Biomacromolecules ; 19(2): 616-625, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283562

RESUMO

Cyclic polymers with internal constraints provide new insight into polymer properties in solution and bulk and can serve as a model system to explain the stability and mobility of cyclic biomacromolecules. The model system used in this work consisted of cyclic polystyrene structures, all with a nearly identical molecular weight, designed with 0-3 constraints located at strategic sites within the cyclic polymer, with either 4 or 6 branch points. The total number of branch points (or arms) within the cyclic ranged from 0 to 18. Molecular dynamic (MD) simulations showed that as the number of arms increased within the cyclic structure, the radius of gyration and the hydrodynamic radius generally decreased, suggesting the greater number of constraints resulted in a more compact polymer chain. The simulations further showed that the excluded volume was much greater for the cyclics compared to a linear polymer at the same molecular weight. The spirocyclic, a structure consisting of three rings joined in series, showed significant excluded volume effects in agreement with experimental data; the reason for which is unclear at this stage. Interestingly, under a size exclusion chromatography flow, the radius of hydration for all the cyclic structures increased compared with the DLS data, and could be explained from the greater swelling of the rings perpendicular to the flow found from previous simulations on rings. This data suggests that the greater compactness, greater excluded volume and structural rearrangements under flow of constrained cyclic polymers could be used to provide a physical basis for understanding greater stability and activity of cyclic biological macromolecules.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Estrutura Molecular
3.
ACS Nano ; 17(9): 8483-8498, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097065

RESUMO

Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Polímeros de Fluorcarboneto/uso terapêutico , Estruturas Metalorgânicas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Imageamento por Ressonância Magnética , Interações Hidrofóbicas e Hidrofílicas , Zinco/uso terapêutico , Íons , Microambiente Tumoral
4.
J Chem Phys ; 128(16): 164515, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18447467

RESUMO

The presence of temporal asymmetries in fluctuation paths of nonequilibrium systems has recently been confirmed numerically in nonequilibrium molecular dynamics simulations of particular deterministic systems. Here we show that this is a common feature of homogeneously driven and thermostatted, reversible, deterministic, chaotic, nonequilibrium systems of interacting particles. This is done by expressing fluctuation paths as correlation functions. The theoretical arguments look rather general, and we expect them to easily extend to other forms of driving and thermostats. The emergence of asymmetry is also justified using the transient time correlation function expression of nonlinear response theory. Numerical simulations are used to verify our arguments.


Assuntos
Biopolímeros/química , Modelos Químicos , Modelos Moleculares , Dinâmica não Linear , Simulação por Computador , Transição de Fase , Estatística como Assunto , Fatores de Tempo
5.
Annu Rev Phys Chem ; 59: 603-33, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18393680

RESUMO

Fluctuation theorems, developed over the past 15 years, have resulted in fundamental breakthroughs in our understanding of how irreversibility emerges from reversible dynamics and have provided new statistical mechanical relationships for free-energy changes. They describe the statistical fluctuations in time-averaged properties of many-particle systems such as fluids driven to nonequilibrium states and provide some of the few analytical expressions that describe nonequilibrium states. Quantitative predictions on fluctuations in small systems that are monitored over short periods can also be made, and therefore the fluctuation theorems allow thermodynamic concepts to be extended to apply to finite systems. For this reason, we anticipate an important role for fluctuation theorems in the design of nanotechnological devices and in the understanding of biological processes. This review discusses these theorems, their physical significance, and results for experimental and model systems.


Assuntos
Modelos Químicos , Biopolímeros/química , Fenômenos Químicos , Físico-Química , Coloides , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA