Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132207, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543019

RESUMO

Owing to the surge in plastic waste generated during the COVID-19 pandemic, concerns regarding microplastic pollution in aqueous environments are increasing. Since microplastics (MPs) are broken down into submicron (< 1 µm) and nanoscale plastics, their real-time morphological detection in water is necessary. However, the decrease in the scattering cross-section of MPs in aqueous media precludes morphological detection by bright-field microscopy. To address this problem, we propose and demonstrate a differential interference contrast (DIC) system that incorporates a magnification-enhancing system to detect MPs in aqueous samples. To detect MPs in both the stationary and mobile phases, a microfluidic chip was designed, taking into consideration the imaging depth of focus and flow resistance. MPs of various sizes flowing in deionized, tap, and pond water at varying speeds were observed under Static and Flow conditions. Successful real-time morphological detection and quantification of polystyrene beads down to 200 nm at a constant flow rate in water were achieved. Thus, the proposed novel method can significantly reduce analysis time and improve the size-detection limit. The proposed DIC microscopy system can be coupled with Raman or infrared spectroscopy in future studies for chemical composition analysis. ENVIRONMENTAL IMPLICATION: Microplastics (MPs), particularly submicron plastics < 1-µm, can pose a risk to human health and aquatic ecosystems. Existing methods for detecting MPs in the aqueous phase have several limitations, including the use of expensive instruments and prolonged and labor-intensive procedures. Our results clearly demonstrated that a new low-cost flow-channeled differential interference contrast microscopy enables the real-time morphological detection and quantification of MPs down to 200 nm under flowing conditions without sample labeling. Consequently, our proposed rapid method for accurate quantitative measurements can serve as a valuable reference for detecting submicron plastics in water samples.


Assuntos
COVID-19 , Poluentes Químicos da Água , Humanos , Plásticos/análise , Microplásticos , Ecossistema , Microscopia , Pandemias , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água/análise
2.
J Hazard Mater ; 340: 300-308, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28719846

RESUMO

Photocatalytically active TiO2-patterned polyimide (PI) films (PI-TiO2) were fabricated using thermal transfer patterning (TTP). When subjected to hot pressing, the TiO2 nanoparticles electrosprayed on steel mesh templates were successfully transferred and formed checker plate patterns on PI film. FE-SEM studies confirmed that pressing at 350°C and 100MPa was optimum for obtaining patterns with uniform TiO2 coverage. When the quantity of TiO2 on the template increased, the amount of it immobilized on PI film also increased from 0.3245 to 1.2378mg per 25cm2. XPS studies confirmed the presence TiO2 on the patterns, and indicated the formation of carboxylic acid and amide groups on the PI surface during TTP. When tested under UVA irradiation, PI-TiO2 with 1.2378mg/25cm2 TiO2 loading exhibited the highest photocatalytic performance for methylene blue (10µM) degradation, with a rate constant of 0.0225min-1 and stable photocatalytic efficacy for 25 cycles of reuse. The PI-TiO2 was also successfully used to degrade amoxicillin, atrazine, and 4-chlorophenol. During photocatalysis, the toxicity of 4-chlorophenol against Vibrio fischeri and the antibiotic activity of amoxicillin against Escherichia coli were decreased. Overall, TTP was found to be a potentially scalable method for fabricating robust immobilized TiO2 photocatalyst.


Assuntos
Resinas Sintéticas/química , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/química , Aliivibrio fischeri/efeitos dos fármacos , Amoxicilina/química , Amoxicilina/toxicidade , Atrazina/química , Atrazina/toxicidade , Catálise , Clorofenóis/química , Clorofenóis/toxicidade , Escherichia coli/efeitos dos fármacos , Azul de Metileno/química , Oxirredução , Processos Fotoquímicos , Purificação da Água/métodos
3.
J Hazard Mater ; 285: 267-76, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25514651

RESUMO

A paper-like photocatalyst was fabricated by electrospraying an N,N'-dimethylformamide (DMF) dispersion of titanium dioxide (TiO2) nanoparticles (NPs) on a poly(vinylidene fluoride) nanofiber (PVDF NF) mat prepared by electrospinning. Morphological studies revealed that the TiO2 NPs uniformly deposited as clusters on the surface of the PVDF NF mat. The immobilized amount of TiO2 was found to be 2.08, 2.44, 3.80, and 4.73 mg per 45 cm(2) of PVDF-TiO2 hybrids for the electrospraying of 10, 20, 40, and 60 ml of TiO2-DMF, respectively. The hybrid photocatalysts were effective in degrading bisphenol A (BPA), 4-chlorophenol (4-CP), and cimetidine (CMT), which dissolved in both deionized water and secondary wastewater effluents, with activity being proportional to the quantity of TiO2 NPs immobilized. For the highest loading amount of TiO2, BPA, 4-CP, and CMT degraded completely within 100, 100, and 40 min of UV irradiation, respectively. Stable photo-oxidation of CMT was maintained through 10 repeated cycles. During these cycles, it was confirmed that there was no loss of TiO2 NPs by inductively coupled plasma optical emission spectrometry. Our results suggest that effective and stable PVDF-TiO2 hybrid photocatalysts can be fabricated on a large scale by combining electrospinning and electrospraying techniques.


Assuntos
Nanofibras , Polivinil , Titânio , Poluentes Químicos da Água/química , Compostos Benzidrílicos/química , Catálise , Clorofenóis/química , Cimetidina/química , Técnicas Eletroquímicas , Manufaturas , Nanofibras/química , Nanofibras/efeitos da radiação , Fenóis/química , Fotólise , Polivinil/química , Polivinil/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA