Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 20(6): 624-633, 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29688057

RESUMO

Biosorption potential of novel lignocellulosic biosorbents Musa sp. peel (MSP) and Aegle marmelos shell (AMS) was investigated for the removal of toxic triphenylmethane dye malachite green (MG), from aqueous solution. Batch experiments were performed to study the biosorption characteristics of malachite green onto lignocellulosic biosorbents as a function of initial solution pH, initial malachite green concentration, biosorbents dosage, and temperature. Biosorption equilibrium data were fitted to two and three parameters isotherm models. Three-parameter isotherm models better described the equilibrium data. The maximum monolayer biosorption capacities obtained using the Langmuir model for MG removal using MSP and AMS was 47.61 and 18.86 mg/g, respectively. The biosorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The pseudo-second-order kinetic model best fitted the experimental data, indicated the MG biosorption using MSP and AMS as chemisorption process. The removal of MG using AMS was found as highly dependent on the process temperature. The removal efficiency of MG showed declined effect at the higher concentrations of NaCl and CaCl2. The regeneration test of the biosorbents toward MG removal was successful up to three cycles.


Assuntos
Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Lignina , Corantes de Rosanilina , Termodinâmica , Compostos de Tritil
2.
Sci Total Environ ; 925: 171116, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382596

RESUMO

Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.


Assuntos
Poluentes Ambientais , Plásticos , Humanos , Animais , Biodegradação Ambiental , Insetos
3.
Int J Biol Macromol ; 226: 1284-1308, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36574582

RESUMO

In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.


Assuntos
Celulose , Poluentes Ambientais , Celulose/química , Reprodutibilidade dos Testes , Polímeros/química , Materiais Biocompatíveis
4.
Chemosphere ; 303(Pt 2): 134993, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598782

RESUMO

Aqueous contaminants such as pharmaceuticals, dyes, personal care products, etc., are the common water contaminants that show adverse health effects. Photocatalysis is one of the well-known techniques to treat these water contaminants. Currently, most inorganic photocatalysts show a poor balance between adsorption and photocatalytic activity. In addition, heavy metal pollution and low biosafety are significant concerns in photocatalysis. Thus, environmentally friendly photocatalysts are required to avoid the secondary pollution caused by some inorganic semiconductor-photocatalysts. Organic polymer-based photocatalysts are low-cost, stable, non-toxic, and can utilize visible and NIR light for photocatalysis. In this review, we have discussed polypyrrole as a photocatalyst. Polypyrrole is a conducting organic polymer photocatalyst that is highly stable with high charge mobility and strong binding sites for photocatalytic reactions. Besides these advantages, polypyrrole has limitations, such as high charge recombination due to a small bandgap and poor dispersity. So we have explored the modifications to polypyrrole photocatalysts, such as doping and heterojunctions. Further, we have explained the applications of polypyrrole in photocatalysis as an adsorbent, sensitizer, degradation of pollutants, and energy production. Finally, the future aspects of polypyrrole photocatalysis are also explored to improve the path of future research.


Assuntos
Polímeros , Pirróis , Catálise , Água
5.
J Hazard Mater ; 417: 125960, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229405

RESUMO

The pollution of aquatic systems with noxious organic and inorganic contaminants is a challenging problem faced by most countries. Water bodies are contaminated with diverse inorganic and organic pollutants originating from various diffuse and point sources, including industrial sectors, agricultural practices, and domestic wastes. Such hazardous water pollutants tend to accumulate in the environmental media including living organisms, thereby posing significant environmental health risks. Therefore, the remediation of wastewater pollutants is a priority. Adsorption is considered as the most efficient technique for the removal of pollutants in aqueous systems, and the deployment of suitable adsorbents plays a vital role for the sustainable application of the technique. The present review gives an overview of polyurethane foam (PUF) as an adsorbent, the synthesis approaches of polyurethane, and characterization aspects. Further emphasis is on the preparation of the various forms of polyurethane adsorbents, and their potential application in the removal of various challenging water pollutants. The removal mechanisms, including adsorption kinetics, isotherms, thermodynamics, and electrostatic and hydrophobic interactions between polyurethane adsorbents and pollutants are discussed. In addition, regeneration, recycling and disposal of spent polyurethane adsorbents are reported. Finally, key knowledge gaps on synthesis, characterization, industrial applications, life cycle analysis, and potential health risks of polyurethane adsorbents are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Descontaminação , Poliuretanos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA