Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofabrication ; 16(2)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38306679

RESUMO

Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.


Assuntos
Osteogênese , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Regeneração Óssea , Poliésteres/química , Impressão Tridimensional
2.
Int J Biol Macromol ; 262(Pt 2): 130194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360222

RESUMO

Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.


Assuntos
Gelatina , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Metacrilatos/química , Impressão Tridimensional , Materiais Biocompatíveis , Engenharia Tecidual
3.
Int J Biol Macromol ; 205: 520-529, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35217077

RESUMO

Bioprinting is an emerging technology for manufacturing cell-laden three-dimensional (3D) scaffolds, which are used to fabricate complex 3D constructs and provide specific microenvironments for supporting cell growth and differentiation. The development of bioinks with appropriate printability and specific bioactivities is crucial for bioprinting and tissue engineering applications, including bone tissue regeneration. Therefore, to produce functional bioinks for osteoblast printing and bone tissue formation, we formulated various nanocomposite hydrogel-based bioinks using natural and biocompatible biomaterials (i.e., alginate, tempo-oxidized cellulose nanofibrils (TOCNF), and polydopamine nanoparticles (PDANPs)). Rheological studies and printability tests revealed that bioinks containing 1.5% alginate and 1.5% TOCNF in the presence or absence of PDANP (0.5%) are suitable for 3D printing. Furthermore, in vitro studies of 3D-printed osteoblast-laden scaffolds indicated that the 0.5% PDANP-incorporated bioink induced significant osteogenesis. Overall, the bioink consisting of alginate, TOCNF, and PDANPs exhibited excellent printability and bioactivity (i.e., osteogenesis).


Assuntos
Bioimpressão , Nanopartículas , Alginatos , Bioimpressão/métodos , Osso e Ossos , Celulose , Indóis , Osteogênese , Polímeros , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
4.
Colloids Surf B Biointerfaces ; 205: 111919, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126550

RESUMO

Three-dimensional bio-plotted scaffolds constructed from encapsulated biomaterials or so-called "bio-inks" have received much attention for tissue regeneration applications, as advances in this technology have enabled more precise control over the scaffold structure. As a base material of bio-ink, sodium alginate (SA) has been used extensively because it provides suitable biocompatibility and printability in terms of creating a biomimetic environment for cell growth, even though it has limited cell-binding moiety and relatively weak mechanical properties. To improve the mechanical and biological properties of SA, herein, we introduce a strategy using hydroxyapatite (HA) nanoparticles and a core/sheath plotting (CSP) process. By characterizing the rheological and chemical properties and printability of SA and SA/HA-blended inks, we successfully fabricated bio-scaffolds using CSP. In particular, the mechanical properties of the scaffold were enhanced with increasing concentrations of HA particles and SA hydrogel. Specifically, HA particles blended with the SA hydrogel of core strands enhanced the biological properties of the scaffold by supporting the sheath part of the strand encapsulating osteoblast-like cells. Based on these results, the proposed scaffold design shows great promise for bone-tissue regeneration and engineering applications.


Assuntos
Alginatos , Hidrogéis , Materiais Biocompatíveis/farmacologia , Durapatita , Tinta , Engenharia Tecidual , Alicerces Teciduais
5.
Macromol Biosci ; 20(12): e2000256, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164317

RESUMO

3D printed scaffolds composed of gelatin and ß-tri-calcium phosphate (ß-TCP) as a biomimetic bone material are fabricated, thereby providing an environment appropriate for bone regeneration. The Ca2+ in ß-TCP and COO- in gelatin form a stable electrostatic interaction, and the composite scaffold shows suitable rheological properties for bioprinting. The gelatin/ß-TCP scaffold is crosslinked with glutaraldehyde vapor and unreacted aldehyde groups which can cause toxicity to cells is removed by a glycine washing. The stable binding of the hydrogel is revealed as a result of FTIR and degradation rate. It is confirmed that the composite scaffold has compressive strength similar to that of cancellous bone and 60 wt% ß-TCP groups containing 40 wt% gelatin have good cellular activity with preosteoblasts. Also, in the animal experiments, the gelatin/ß-TCP scaffold confirms to induce bone formation without any inflammatory responses. This study suggests that these fabricated scaffolds can serve as a potential bone substitute for bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual , Alicerces Teciduais/química , Células 3T3 , Animais , Bioimpressão , Regeneração Óssea/fisiologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Gelatina/farmacologia , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia , Impressão Tridimensional
6.
Nanoscale ; 11(48): 23275-23285, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31782460

RESUMO

Three-dimensional (3D) cell printing is a versatile technique enabling the creation of 3D constructs containing hydrogel and cells in the desired shape or pattern. Bioinks exhibiting appropriate mechanical properties and biological activities to support cell growth and/or differentiation toward a specific lineage play critical roles in 3D cell printing and tissue engineering applications. Herein, we explored alginate/graphene oxide (GO) composites as bioinks for their potential to improve printability, structural stability, and osteogenic activities for osteogenic tissue engineering applications. The addition of GO (0.05-1.0 mg mL-1) to 3% alginate significantly enhanced the printing performances of the alginate bioink. In addition, mesenchymal stem cells (MSCs) printed with alginate/GO showed good proliferation and higher survival in an oxidative stress environment. The 3D scaffolds printed with MSCs and alginate/GO demonstrated significantly enhanced osteogenic differentiation compared with those printed with MSCs and alginate. Overall, a bioink of 3% alginate and 0.5 mg mL-1 GO showed the most balanced characteristics in terms of printability, structural stability, and osteogenic induction of the printed MSCs. Alginate/GO composite bioinks will be useful for bioprinting research for various tissue engineering applications.


Assuntos
Alginatos/química , Bioimpressão/métodos , Regeneração Óssea , Grafite/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Hidrogéis/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Impressão Tridimensional , Alicerces Teciduais/química
7.
J Colloid Interface Sci ; 537: 333-344, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30453227

RESUMO

Currently, there is a great clinical demand for biocompatible and robust tissue-engineered tubular scaffolds for use as artificial vascular graft materials. Despite considerable research on vascular scaffolds, there has still been only limited development of scaffold materials possessing both sufficient mechanical strengths and biological effects for vascular application. In this work, we designed a mechanically robust, bilayered scaffold and manufactured it by combining electrospinning (ELSP) and three-dimensional (3D) printing techniques. This material was coated with polydopamine (PDA) and vascular endothelial growth factor (VEGF) was grafted directly on the scaffold surface to induce potent angiogenic activity. We confirmed that the coated-PDA layer was evenly deposited on the bare polycaprolactone (PCL) scaffold and could enable abundant VEGF immobilization with enhanced hydrophilicity. The VEGF immobilized porous tubular scaffold was well prepared without mechanical weakness induced by surface modification steps. During in vitro and in vivo testing, VEGF immobilized scaffolds elicited markedly enhanced vascular cell proliferation and angiogenic differentiation, as compared to non-treated groups. These results demonstrate that the developed scaffolds may represent an innovative paradigm in vascular tissue engineering by inducing angiogenesis as a means of remodeling and healing vascular defects for use in restorative procedures.


Assuntos
Biomimética , Bivalves , Impressão Tridimensional , Alicerces Teciduais/química , Fatores de Crescimento do Endotélio Vascular/química , Animais , Diferenciação Celular , Proliferação de Células , Indóis/química , Masculino , Camundongos , Tamanho da Partícula , Polímeros/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
8.
Nanoscale ; 10(33): 15447-15453, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30091763

RESUMO

In this study, we designed scaffolds coated with gold nanoparticles (GNPs) grown on a polydopamine (PDA) coating of a three-dimensional (3D) printed polycaprolactone (PCL) scaffold. Our results demonstrated that the scaffolds developed here may represent an innovative paradigm in bone tissue engineering by inducing osteogenesis as a means of remodeling and healing bone defects.


Assuntos
Indóis/química , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/química , Osteogênese , Polímeros/química , Engenharia Tecidual , Alicerces Teciduais , Tecido Adiposo/citologia , Diferenciação Celular , Células Cultivadas , Ouro , Humanos , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA