Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Inflamm Res ; 71(5-6): 641-652, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347345

RESUMO

OBJECT: Phosphatidylserine-containing liposomes (PSLs) can mimic the immunomodulatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. Sodium butyrate, an antiinflammatory short-chain fatty acid, is known to facilitate the M2 polarization of macrophages. This study aimed to investigate the effect of sodium butyrate on PSLs-induced macrophage polarization. METHODS: PSLs physical properties and cellular uptake tests, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry analysis were performed to assess the polarization-related indicators of M1/M2 macrophages. RESULTS: The results showed that sodium butyrate did not affect the size and cellular uptake of PSLs. For M1 macrophage polarization, sodium butyrate significantly intensified the antiinflammatory function of PSLs, inhibiting LPS-induced proinflammatory genes expression, cytokines and enzyme release (tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-6, and inducible nitric oxide synthase), as well as CD86 (M1 marker) expression. In addition to the enhancing effect of antiinflammation, sodium butyrate also promoted PSL-induced M2 macrophages polarization, especially elevated thymus and activation-regulated chemokine (TARC) and arginase-1 (Arg-1) enzyme levels which are involved in tissue repair. CONCLUSION: Sodium butyrate enhanced antiinflammatory properties and M2-polarization inducing effect of PSLs. Therefore, sodium butyrate may represent a novel approach to enhance PSL-induced macrophage polarization.


Assuntos
Lipossomos , Fosfatidilserinas , Anti-Inflamatórios/farmacologia , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Lipossomos/metabolismo , Lipossomos/farmacologia , Ativação de Macrófagos , Macrófagos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia
2.
Photochem Photobiol Sci ; 17(6): 763-772, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29717739

RESUMO

Systemic injection of a photosensitizer is a general method in photodynamic therapy, but it has complications due to the unintended systemic distribution and remnants of photosensitizers. This study focused on the possibility of suppressing luminal proliferative cells by excessive reactive oxygen species from locally delivered photosensitizer with biocompatible polyurethane, instead of the systemic injection method. We used human bladder cancer cells, hematoporphyrin as the photosensitizer, and polyurethane film as the photosensitizer-delivering container. The light source was a self-made LED (510 nm, 5 mW cm-2) system. The cancer cells were cultured on different doses of hematoporphyrin-containing polyurethane film and irradiated with LED for 15 minutes and 30 minutes each. After irradiating with LED and incubating for 24 hours, cell viability analysis, cell cycle analysis, apoptosis assay, intracellular and extracellular ROS generation study and western blot were performed. The cancer cell suppression effects of different concentrations of the locally delivered hematoporphyrin with PDT were compared. Apoptosis dominant cancer cell suppressions were shown to be hematoporphyrin dose-dependent. However, after irradiation, intracellular ROS amounts were similar in all the groups having different doses of hematoporphyrin, but these values were definitely higher than those in the control group. Excessive extracellular ROS from the intended, locally delivered photosensitizer for photodynamic treatment application had an inhibitory effect on luminal proliferative cancer cells. This method can be another possibility for PDT application on contactable or attachable lesions.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Hematoporfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Poliuretanos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Hematoporfirinas/química , Humanos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Poliuretanos/química , Espécies Reativas de Oxigênio/análise , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Raios Ultravioleta , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
3.
Adv Exp Med Biol ; 1064: 93-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471028

RESUMO

In recent tissue engineering applications, the advance of biomaterials has focused on the devising of biomimetic materials that are directing new tissue formation and capable of causing specific cellular responses. These advances can be controlled by modifying the devising parameters of the materials. The biomimetic materials potentially mimic many roles of ECM in tissues. For the homogeneous distribution and biocompatibility of scaffolds by cell migration with biomimetic materials, cell migration is studied because it has a important role in physiological phenomenon and in pathologies; cancer metastasis, immune response or embryonic development. This review discusses the migration of cells with biomimetic materials for tissue engineering. It is also summarized that the recent advances of cell migration with biomimetic materials in 2-D and 3-D for tissue engineering.


Assuntos
Materiais Biomiméticos , Movimento Celular , Matriz Extracelular , Engenharia Tecidual , Materiais Biocompatíveis , Humanos , Alicerces Teciduais
4.
Biochem Biophys Res Commun ; 463(1-2): 137-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26002463

RESUMO

The infiltration of the cells into the scaffolds is important phenomenon to give them good biocompatibility and even biodegradability. Fluid shear stress is one of the candidates for the infiltration of cells into scaffolds. Here we investigated the directional migration of human mesenchymal stem cells and infiltration into PLGA scaffold by fluid shear stress. The human mesenchymal stem cells showed directional migrations following the direction of the flow (8, 16 dyne/cm(2)). In the scaffold models, the fluid shear stress (8 dyne/cm(2)) enhanced the infiltration of cells but did not influence on the infiltration of Poly(lactic-co-glycolic acid) particles.


Assuntos
Ácido Láctico/química , Células-Tronco Mesenquimais/fisiologia , Ácido Poliglicólico/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Movimento Celular , Células Cultivadas , Humanos , Hidrodinâmica , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Engenharia Tecidual/instrumentação
5.
Dent Mater J ; 43(2): 276-285, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447980

RESUMO

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.


Assuntos
Dimetil Sulfóxido , Osteogênese , Teste de Materiais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Cálcio , Cimento de Silicato/química , Cimentos Dentários/farmacologia , Cimentos Dentários/química
6.
Biomater Sci ; 11(4): 1358-1372, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36594560

RESUMO

The control of macrophage polarization is important in bone tissue regeneration such as osseointegration. In this study, a coating method was developed to improve the osseointegration of titanium (Ti) implants by generating an immunomodulatory effect. The surface of the Ti discs was coated with a poly(lactide-co-glycolide)(PLGA) polymer, phosphatidylserine (PS), and arginine-glycine-aspartic acid (RGD) peptide conjugated phospholipid. In in vitro assay using mouse bone marrow-derived macrophages (BMDMs), the most significant expression of the M2 marker genes (Arg-1, YM-1, FIZZ1) and CD206, an M2 surface marker, was obtained with coatings containing 6 mol% RGD conjugates and phospholipids consisting of 50 mol% PS. The M2-inducing effect of RGD and PS was also verified in rat femurs where coated Ti rods were implanted. The RGD and PS coating significantly enhanced the osseointegration of the Ti implants. Moreover, a biomechanical push-out test showed that the RGD and PS coating increased the interfacial binding force between the bone and implants. These results indicate that PS and RGD can be applied to the solid surface of implantable biomedical devices to improve immunomodulation and tissue regeneration.


Assuntos
Osseointegração , Titânio , Ratos , Camundongos , Animais , Titânio/farmacologia , Fosfatidilserinas/farmacologia , Ácido Aspártico , Materiais Revestidos Biocompatíveis/farmacologia , Oligopeptídeos/farmacologia , Propriedades de Superfície
7.
Biotechnol J ; 16(11): e2100156, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34374222

RESUMO

A terminal sterilization process for tissue engineering products, such as allografts and biomaterials is necessary to ensure complete removal of pathogenic microorganisms such as the bacteria, fungi, and viruses. However, it can be difficult to sterilize allografts and artificial tissue models packaged in wet conditions without deformation. In this study, we investigated the sterilization effects of electrical stimulation (ES) and assessed its suitability by evaluating sterility assurance levels in pouches at a constant current. Stability of polyvinylidene fluoride pouches was determined by a sterility test performed after exposure to five microorganisms (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans) for 5 days; the sterility test was also performed with decellularized human dermal tissues inoculated with the five microorganisms. Sterilization using ES inactivated microorganisms both inside and outside of sealed pouches and caused no damage to the packaged tissue. Our results support the development of a novel system that involves ES sterilization for packaging of implantable biomaterials and human derived materials.


Assuntos
Polivinil , Esterilização , Bacillus subtilis , Estimulação Elétrica , Humanos
8.
Biomaterials ; 279: 121239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753037

RESUMO

Phosphatidylserine-containing liposomes (PSLs) can mimic the anti-inflammatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. MGF-E8, a bridge molecule between phosphatidylserine and macrophages, can promote M2 polarization by activating macrophage integrin with its arginine-glycine-aspartic acid (RGD) motif. In this study, to mimic MGF-E8, PSLs presenting RGD peptide (RGD-PSLs) were prepared, and their immunomodulatory effects on macrophages and the bone tissue regeneration of rat calvarial defects were investigated. RGD peptides enhanced the phagocytosis of PSLs by macrophages, especially when the PSLs contained 3% RGD. RGD-PSLs were also more effective than PSLs for the suppression of lipopolysaccharide-induced gene expression of proinflammatory cytokines (i.e., IL-1ß, IL-6, and TNF-α) as well as CD86 (M1 marker) expression. Furthermore, RGD promoted PSL-induced M2 polarization: 3%-RGD-PSLs significantly enhanced the mRNA expression of Arg-1, FIZZ1, and YM-1, as well as CD206 (M2 marker) expression. In a calvarial defect model, a significant increase in M2 with a decrease in M1 macrophages was observed with 3%-RGD-PSL treatment compared with the effects of PSLs alone. Finally, new bone formation was also accelerated by 3%-RGD-PSLs. Thus, these results suggest that the intensive immunomodulatory effect of RGD-PSLs led to the enhancement of bone tissue regeneration.


Assuntos
Lipossomos , Fosfatidilserinas , Animais , Regeneração Óssea , Macrófagos , Oligopeptídeos , Ratos
9.
Adv Mater ; 31(41): e1904476, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31454108

RESUMO

Inserting a graft into vessels with different diameters frequently causes severe damage to the host vessels. Poor flow patency is an unresolved issue in grafts, particularly those with diameters less than 6 mm, because of vessel occlusion caused by disturbed blood flow following fast clotting. Herein, successful patency in the deployment of an ≈2 mm diameter graft into a porcine vessel is reported. A new library of property-tunable shape-memory polymers that prevent vessel damage by expanding the graft diameter circumferentially upon implantation is presented. The polymers undergo seven consecutive cycles of strain energy-preserved shape programming. Moreover, the new graft tube, which features a diffuser shape, minimizes disturbed flow formation and prevents thrombosis because its surface is coated with nitric-oxide-releasing peptides. Improved patency in a porcine vessel for 18 d is demonstrated while occlusive vascular remodeling occurs. These insights will help advance vascular graft design.


Assuntos
Oclusão de Enxerto Vascular/prevenção & controle , Fenômenos Mecânicos , Polímeros/farmacologia , Animais , Polímeros/química , Estresse Mecânico , Suínos
10.
Acta Biomater ; 61: 169-179, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782724

RESUMO

Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. STATEMENT OF SIGNIFICANCE: Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on biomaterial surfaces.


Assuntos
Betaína/análogos & derivados , Incrustação Biológica , Monofenol Mono-Oxigenase/metabolismo , Polímeros/química , Adsorção , Animais , Aderência Bacteriana , Betaína/química , Materiais Revestidos Biocompatíveis/química , Di-Hidroxifenilalanina/química , Fibrinogênio/metabolismo , Humanos , Masculino , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Adesividade Plaquetária , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta , Staphylococcus aureus/citologia , Tiramina/química , Molhabilidade
11.
J Control Release ; 266: 321-330, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28987880

RESUMO

The leading cause of synthetic graft failure includes thrombotic occlusion and intimal hyperplasia at the site of vascular anastomosis. Herein, we report a co-immobilization strategy of heparin and potent anti-neointimal drug (Mitogen Activated Protein Kinase II inhibitory peptide; MK2i) by using a tyrosinase-catalyzed oxidative reaction for preventing thrombotic occlusion and neointimal formation of synthetic vascular grafts. The binding of heparin-tyramine polymer (HT) onto the polycarprolactone (PCL) surface enhanced blood compatibility with significantly reduced protein absorption (64.7% decrease) and platelet adhesion (85.6% decrease) compared to bare PCL surface. When loading MK2i, 1) the HT depot surface gained high MK2i-loading efficiency through charge-charge interaction, and 2) this depot platform enabled long-term, controlled release over 4weeks (92-272µg/mL of MK2i). The released MK2i showed significant inhibitory effects on VSMC migration through down-regulated phosphorylation of target proteins (HSP27 and CREB) associated with intimal hyperplasia. In addition, it was found that the released MK2i infiltrated into the tissue with a cumulative manner in ex vivo human saphenous vein (HSV) model. This present study demonstrates that enzymatically HT-coated surface modification is an effective strategy to induce long-term MK2i release as well as hemocompatibility, thereby improving anti-neointimal activity of synthetic vascular grafts.


Assuntos
Anticoagulantes/administração & dosagem , Heparina/administração & dosagem , Peptídeos/administração & dosagem , Poliésteres/administração & dosagem , Animais , Anticoagulantes/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Heparina/química , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Neointima/prevenção & controle , Peptídeos/química , Adesividade Plaquetária/efeitos dos fármacos , Poliésteres/química , Ratos Sprague-Dawley , Veia Safena/metabolismo , Trombose/prevenção & controle
12.
ACS Appl Mater Interfaces ; 8(42): 28448-28457, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27696825

RESUMO

The principle of photodynamic treatment (PDT) involves the administration of photosensitizer (PS) at diseased tissues, followed by light irradiation to produce reactive oxygen species (ROS). In cells, a moderate increase in ROS plays an important role as signaling molecule to promote cell proliferation, whereas a severe increase of ROS causes cell damage. Previous studies have shown that low levels of ROS stimulate cell growth through PS drugs-treating PDT and nonthermal plasma treatment. However, these methods have side effects which are associated with low tissue selectivity and remaining of PS residues. To overcome such shortcomings, we designed hematoporphyrin-incorporated polyurethane (PU) film induced generation of extracellular ROS with singlet oxygen and free radicals. The film can easily control ROS production rate by regulating several parameters including light dose, PS dose. Also, its use facilitates targeted delivery of ROS to the specific lesion. Our study demonstrated that extracellular ROS could induce the formation of intracellular ROS. In vascular endothelial cells, a moderated increase in intracellular ROS also stimulated cell proliferation and cell cycle progression by accurate control of optimum levels of ROS with hematoporphyrin-incorporated polymer films. This modulation of cellular growth is expected to be an effective strategy for the design of next-generation PDT.


Assuntos
Células Endoteliais , Proliferação de Células , Hematoporfirinas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Poliuretanos , Espécies Reativas de Oxigênio
13.
Biomed Mater ; 10(5): 055010, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26391656

RESUMO

Intimal hyperplasia is an excessive ingrowth of tissue resulting in chronic structural lesions commonly found at sites of atherosclerotic lesions, arterial angioplasty, vascular graft anastomoses, and other vascular abnormalities. Epigallocatechin-3-O-gallate (EGCG) was shown to elicit antioxidant, anti-proliferative, and anti-thrombogenic effects. In this study, we used an electrospinning technique to synthesize EGCG-eluting biodegradable poly(L-lactide glycolic acid) (PLGA) fiber sheets for local delivery of EGCG and investigated the effect of their exovascular application on intimal hyperplasia following balloon-induced abdominal aorta injury in a rabbit experimental model. The morphology of the composite sheets was characterized using scanning electron microscopy and Fourier transform-infrared spectroscopy. EGCG was loaded and dispersed into the PLGA-based electrospun fibers. The EGCG-loaded PLGA sheets exhibited sustained EGCG release following the initial 24 h of burst release in phosphate-buffered saline. In vivo studies demonstrated significant inhibition of intimal hyperplasia following the application of the EGCG-eluting electrospun PLGA fiber sheets, compared with vehicle PLGA controls. In conclusion, our results show that exovascular application of EGCG-eluting PLGA electrospun fiber sheets may provide a useful system for the effective local delivery of drugs for the prevention of intimal hyperplasia.


Assuntos
Aorta Abdominal/lesões , Catequina/análogos & derivados , Implantes de Medicamento/administração & dosagem , Endotélio Vascular/efeitos dos fármacos , Ácido Láctico/química , Ácido Poliglicólico/química , Lesões do Sistema Vascular/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Aorta Abdominal/efeitos dos fármacos , Catequina/administração & dosagem , Catequina/química , Difusão , Implantes de Medicamento/química , Galvanoplastia/métodos , Masculino , Membranas Artificiais , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanoporos/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Coelhos , Resultado do Tratamento , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA