Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 395: 130347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242243

RESUMO

The heavy metals, pesticides and dyes in agriculture and industry caused serious water pollution have increased the urgency for the advancement of biomass-based adsorbents due to their merits of low cost, high efficiency, and environmental sustainability. Thus, this review systematically examines the recent progress of lignin-based adsorbents dedicated to wastewater purification. Commencing with a succinct exposition on the intricate structure and prevalent forms of lignin, the review proceeds to expound rational design strategies tailored for lignin-based adsorbents coupled with adsorption mechanisms and regeneration methods. Emphasis is placed on the potential industrial applications of lignin-based adsorbents, accentuating their capacity for recovery and direct utilization post-use. The future challenges and outlooks associated with lignin-based adsorbents are discussed to provide novel perspectives for the development of high-performance and sustainable biosorbents, facilitating the effective removal of pollutants and the value-added utilization of resources in a sustainable manner.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Lignina , Corantes , Purificação da Água/métodos , Adsorção
2.
Int J Biol Macromol ; 189: 183-193, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34428484

RESUMO

The significant progress in efforts to design hydrogel adhesive mimicking mussels' functions has been witnessed in recent years. However, it is still an arduous challenge to fabricate self-adhesive hydrogel adhesive that tradeoff of exalting features containing scalability, self-healing, degradability, biocompatibility, and antibacterial properties. Herein, we manufactured a multi-functional physical hydrogel adhesive by integrating catechol groups modified chitosan and polyvinyl alcohol (PVA). Intriguingly, the physical gels reinforce durable and repeatable adhesiveness due to the limited auto-oxidation of catechol groups of the 3-(3,4-dihydroxyphenyl) propionic acid modified chitosan (DCS), which can be adhered diametrically on human skin without shedding and residue. Additionally, the dynamic H-bonds between DCS and PVA endows the hydrogel to self-heal under a relatively mild stimulation. The assembly of silver nano armor remarkably enhances the mechanical strength and antibacterial of the hydrogel. Meanwhile, the metal coordination formed between the nano-silver and the hydroxyl groups of catechol and the electrostatic interaction between the silver ions and the hydroxyl groups also contribute to the hydrogel to achieve self-healing. This work provides a neoteric prospect in designing degradable hydrogels with stretchability, self-adhesion, self-healing, antibacterial and biocompatibility for potential applications in tissue adhesion and wound healing.


Assuntos
Adesivos/farmacologia , Materiais Biocompatíveis/química , Biomimética , Bivalves/química , Quitosana/química , Hidrogéis/química , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Reologia , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
3.
ACS Appl Mater Interfaces ; 12(50): 56509-56521, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270440

RESUMO

The application of conductive hydrogels in intelligent biomimetic electronics is a hot topic in recent years, but it is still a great challenge to develop the conductive hydrogels through a rapid fabrication process at ambient temperature. In this work, a versatile poly(acrylamide) @cellulose nanocrystal/tannic acid-silver nanocomposite (NC) hydrogel integrated with excellent stretchability, repeatable self-adhesion, high strain sensitivity, and antibacterial property, was synthesized via radical polymerization within 30 s at ambient temperature. Notably, this rapid polymerization was realized through a tannic acid-silver (TA-Ag) mediated dynamic catalysis system that was capable of activating ammonium persulfate and then initiated the free-radical polymerization of the acrylamide monomer. Benefiting from the incorporation of TA-Ag metal ion nanocomplexes and cellulose nanocrystals, which acted as dynamic connecting bridges by hydrogen bonds to efficiently dissipate energy, the obtained NC hydrogels exhibited prominent tensile strain (up to 4000%), flexibility, self-recovery, and antifatigue properties. In addition, the hydrogels showed repeatable adhesiveness to different substrates (e.g., glass, wood, bone, metal, and skin) and significant antibacterial properties, which were merits for the hydrogels to be assembled into a flexible epidermal sensor for long-term human-machine interfacial contact without concerns about the use of external adhesive tapes and bacterial breeding. Moreover, the remarkable conductivity (σ ∼ 5.6 ms cm-1) and strain sensitivity (gauge factor = 1.02) allowed the flexible epidermal sensors to monitor various human motions in real time, including huge movement of deformations (e.g., wrist, elbow, neck, shoulder) and subtle motions. It is envisioned that this work would provide a promising strategy for the rapid preparation of conductive hydrogels in the application of flexible electronic skin, biomedical devices, and soft robotics.


Assuntos
Hidrogéis/química , Prata/química , Taninos/química , Dispositivos Eletrônicos Vestíveis , Resinas Acrílicas , Adesividade , Catálise , Celulose/química , Humanos , Ligação de Hidrogênio , Movimento/fisiologia , Nanocompostos/química , Polimerização , Reologia , Resistência à Tração
4.
ACS Appl Mater Interfaces ; 11(6): 5885-5895, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652853

RESUMO

Although self-healing gels with structural resemblance to biological tissues attract great attention in biomedical fields, it remains a dilemma for combination between fast self-healing properties and high mechanical toughness. On the basis of the design of dynamic reversible cross-links, we incorporate rigid tannic acid-coated cellulose nanocrystal (TA@CNC) motifs into the poly(vinyl alcohol) (PVA)-borax dynamic networks for the fabrication of a high toughness and rapidly self-healing nanocomposite (NC) hydrogel, together with dynamically adhesive and strain-stiffening properties that are particularly indispensable for practical applications in soft tissue substitutes. The results demonstrate that the obtained NC gels present a highly interconnected network, where flexible PVA chains wrap onto the rigid TA@CNC motifs and form the dynamic TA@CNC-PVA clusters associated by hydrogen bonds, affording the critical mechanical toughness. The synergetic interactions between borate-diol bonds and hydrogen bonds impart a typical self-healing behavior into the NC gels, allowing the dynamic cross-linked networks to undergo fast rearrangement in the time scale of seconds. Moreover, the obtained NC hydrogels not only mimic the main feature of biological tissues with the unique strain-stiffening behavior but also display unique dynamic adhesiveness to nonporous and porous substrates. It is expected that this versatile approach opens up a new prospect for the rational design of multifunctional cellulosic hydrogels with remarkable performance to expand their applications.


Assuntos
Celulose/química , Hidrogéis/química , Nanocompostos/química , Adesividade , Ligação de Hidrogênio , Álcool de Polivinil/química , Reologia , Taninos/química , Resistência à Tração
5.
ACS Appl Mater Interfaces ; 9(34): 28305-28318, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28771308

RESUMO

Dynamic noncovalent interactions with reversible nature are critical for the integral synthesis of self-healing biological materials. In this work, we developed a simple one-pot strategy to prepare a fully physically cross-linked nanocomposite hydrogel through the formation of the hydrogen bonds and dual metal-carboxylate coordination bonds within supramolecular networks, in which iron ions (Fe3+) and TEMPO oxidized cellulose nanofibrils (CNFs) acted as cross-linkers and led to the improved mechanical strength, toughness, time-dependent self-recovery capability and self-healing property. The spectroscopic analysis and rheological measurements corroborated the existence of hydrogen bonds and dual coordination bonds. The mechanical tests and microscopic morphology were explored to elucidate the recovery properties and toughening mechanisms. The hydrogen bonds tend to preferentially break prior to the coordination bonds associated complexes that act as skeleton to maintain primary structure integrity, and the survived coordination bonds with dynamic feature also serve as sacrificial bonds to dissipate another amount of energy after the rupture of hydrogen bonds, which collectively maximize the contribution of sacrificial bonds to energy dissipation while affording elasticity. Additionally, the multiple noncovalent interactions in diverse types synergistically serve as dynamic but highly stable associations, leading to the effective self-healing efficiency over 90% after damage. We expect that this facile strategy of incorporating the biocompatible and biodegradable CNFs as building blocks may enrich the avenue in exploration of dynamic and tunable cellulosic hydrogels to expand their potential applications in the biomedical field.


Assuntos
Nanocompostos , Celulose , Hidrogéis , Hidrogênio , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA