Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 204: 111109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798751

RESUMO

Microplastic (MP) pollution of the marine environment is now a growing global concern posing a threat to a variety of species through the ingestion and transfer within food webs. This is considered a potential toxicological threat to marine species due to the chemical additives used to make many plastic products, or the persistent organic pollutants that may accumulate on them while residing in the environment. While the presence of MPs in the marine environment is widely documented, there are no other review articles providing a summary of published effect studies of MPs on the immune and reproductive systems of marine species. This manuscript reviews reproductive and immune-system changes in response to MPs in 7 and 9 species, respectively. Some species such as Mytilus galloprovincialis and oyster Crassostrea gigas were investigated in multiple papers. Most studies have been conducted on invertebrates, and only 3 studies have been performed on vertebrates, with exposure times ranging between 30 min and 60 days. A review of the literature revealed that the most common MPs types studied in relation to adverse impacts on immune system and reproductive success in marine species were polystyrene (PS) and polyethylene (PE). The immune system's responses to MPs exposure varied depending on the species, with altered organismal defense mechanisms and neutrophil function observed in fish and changes in lysosomal membrane stability and apoptotic-like nuclear alterations in phagocytes reported in invertebrate species. Reproductive responses to MPs exposure, varied depending on species, but included significant reduction in gamete and oocyte quality, fecundity, sperm swimming speed, and quality of offspring. The lack of published data means that developing a clear understanding of the impact across taxonomic groups with different feeding and behavioral traits is often difficult. Further work is required to better understand the risk MPs pose to the immune and reproductive systems of marine species in order to fully evaluate the impact these ubiquitous pollutants are having on marine ecosystems and the associated goods and services they provide.


Assuntos
Genitália/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Crassostrea , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/farmacologia , Poluição Ambiental , Peixes , Cadeia Alimentar , Genitália/química , Invertebrados , Microplásticos/análise , Mytilus/efeitos dos fármacos , Plásticos , Polietileno , Poliestirenos , Poluentes Químicos da Água/análise
2.
Mar Pollut Bull ; 194(Pt A): 115271, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429180

RESUMO

Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Humanos , Microplásticos , Plásticos , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Bibliometria
3.
Mar Pollut Bull ; 169: 112581, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34111606

RESUMO

Microplastics (MPs) are a modern societal concern and recognized as a growing environmental hazard by careless disposal. This study aimed to assess the MPs content in white shrimp (Metapenaeus affinis) inhabiting in a natural habitat affected by high anthropogenic pressures, and recognize if the shrimp could be a suitable bioindicator for MPs pollution. To assess spatial changes of MPs presence in shrimps, sampling was carried out by a trawl net from 13 stations across the entire Musa Bay. Tissues of shrimps were examined for MPs following floatation, digestion, microscopic observation and identified by Confocal Raman Spectroscopy. MPs were observed in the shrimps of all stations. The average MPs abundance was 1.02 items/g of digestive tissues. About 37% of recorded MPs in M. affinis samples exceeding 500 µm that could be related to surface area and stickiness as notable controls beyond ingestion. The dominant shape of MPs was fiber, followed by film. Five different colors were recorded in tissues of M. affinis samples, and the white/transparent MPs were the most abundant, followed by blue and black. In addition, a wide range of recorded colors of MPs in the study area could suggest a variety of sources of MPs. Confocal Raman Spectroscopy confirmed that polyethylene terephthalate (46%), polypropylene (27%) and polystyrene (27%) were dominant polymers. As the average annually consumption of shrimp in the region is 2.3 g/person/day, therefore each person could consume 857 MPs per year. In conclusion, the results of this research provide a detailed and useful information for a better understanding of MPs contamination in the region and suggest Jinga shrimp as a suitable species for monitoring MPs in marine ecosystems.


Assuntos
Penaeidae , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Oceano Índico , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA