Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260948

RESUMO

Aspirin (ASA) has attracted wide interest of numerous scientists worldwide thanks to its chemopreventive and chemotherapeutic effects, particularly in colorectal cancer (CRC). Incorporation of selenium (Se) atom into ASA has greatly increased their anti-tumoral efficacy in CRC compared with the organic counterparts without the Se functionality, such as the promising antitumoral methylseleno-ASA analog (1a). Nevertheless, the efficacy of compound 1a in cancer cells is compromised due to its poor solubility and volatile nature. Thus, 1a has been formulated with native α-, ß- and γ-cyclodextrin (CD), a modified ß-CD (hydroxypropyl ß-CD, HP-ß-CD) and Pluronic F127, all of them non-toxic, biodegradable and FDA approved. Water solubility of 1a is enhanced with ß- and HP- ß-CDs and Pluronic F127. Compound 1a forms inclusion complexes with the CDs and was incorporated in the hydrophobic core of the F127 micelles. Herein, we evaluated the cytotoxic potential of 1a, alone or formulated with ß- and HP- ß-CDs or Pluronic F127, against CRC cells. Remarkably, 1a formulations demonstrated more sustained antitumoral activity toward CRC cells. Hence, ß-CD, HP-ß-CD and Pluronic F127 might be excellent vehicles to improve pharmacological properties of organoselenium compounds with solubility issues and volatile nature.


Assuntos
Antineoplásicos/uso terapêutico , Aspirina/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Aspirina/química , Aspirina/farmacologia , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Células HT29 , Humanos , Micelas , Poloxâmero/química , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectrometria de Fluorescência , Água/química , beta-Ciclodextrinas/química
2.
Proc Natl Acad Sci U S A ; 110(10): 4003-8, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431178

RESUMO

Spina bifida (SB) patients afflicted with myelomeningocele typically possess a neurogenic urinary bladder and exhibit varying degrees of bladder dysfunction. Although surgical intervention in the form of enterocystoplasty is the current standard of care in which to remedy the neurogenic bladder, it is still a stop-gap measure and is associated with many complications due to the use of bowel as a source of replacement tissue. Contemporary bladder tissue engineering strategies lack the ability to reform bladder smooth muscle, vasculature, and promote peripheral nerve tissue growth when using autologous populations of cells. Within the context of this study, we demonstrate the role of two specific populations of bone marrow (BM) stem/progenitor cells used in combination with a synthetic elastomeric scaffold that provides a unique and alternative means to current bladder regeneration approaches. In vitro differentiation, gene expression, and proliferation are similar among donor mesenchymal stem cells (MSCs), whereas poly(1,8-octanediol-cocitrate) scaffolds seeded with SB BM MSCs perform analogously to control counterparts with regard to bladder smooth muscle wall formation in vivo. SB CD34(+) hematopoietic stem/progenitor cells cotransplanted with donor-matched MSCs cause a dramatic increase in tissue vascularization as well as an induction of peripheral nerve growth in grafted areas compared with samples not seeded with hematopoietic stem/progenitor cells. Finally, MSC/CD34(+) grafts provided the impetus for rapid urothelium regeneration. Data suggest that autologous BM stem/progenitor cells may be used as alternate, nonpathogenic cell sources for SB patient-specific bladder tissue regeneration in lieu of current enterocystoplasty procedures and have implications for other bladder regenerative therapies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Regeneração/fisiologia , Disrafismo Espinal/fisiopatologia , Disrafismo Espinal/cirurgia , Bexiga Urinaria Neurogênica/fisiopatologia , Bexiga Urinaria Neurogênica/cirurgia , Bexiga Urinária/fisiopatologia , Bexiga Urinária/cirurgia , Adolescente , Animais , Criança , Citratos/química , Feminino , Humanos , Masculino , Neovascularização Fisiológica , Regeneração Nervosa/fisiologia , Polímeros/química , Ratos , Ratos Nus , Disrafismo Espinal/complicações , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Bexiga Urinária/irrigação sanguínea , Bexiga Urinaria Neurogênica/etiologia
3.
Cancer Lett ; 506: 107-119, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33600895

RESUMO

Targeting the metastatic process to prevent disease dissemination in cancer remains challenging. One step in the metastatic cascade involves cancer cells transiting through the vascular endothelium after inflammation has increased the permeability of this cellular layer. Reducing inflammation-mediated gaps in the vascular endothelium could potentially be used to retard metastasis. This study describes the development of a novel ASR396-containing nanoparticle designed to activate the Sphingosine-1-Phosphate Receptor 1 (S1PR1) in order to tighten the junctions between the endothelial cells lining the vascular endothelium thereby inhibiting metastasis. ASR396 was derived from the S1PR1 agonist SEW2871 through chemical modification enabling the new compound to be loaded into a nanoliposome. ASR396 retained S1PR1 binding activity and the nanoliposomal formulation (nanoASR396) made it systemically bioavailable upon intravenous injection. Studies conducted in microvessels demonstrated that nanoASR396 significantly attenuated inflammatory mediator-induced permeability increase through the S1PR1 activation. Similarly, nanoASR396 inhibited gap formation mediated by inflammatory agents on an endothelial cell monolayer by decreasing levels of phosphorylated myosin light chain protein thereby inhibiting cellular contractility. In animal models, nanoASR396 inhibited lung metastasis by up to 80%, indicating its potential for retarding melanoma metastasis. Thus, a novel bioavailable nanoparticle-based S1PR1 agonist has been developed to negate the effects of inflammatory mediators on the vascular endothelium in order to reduce the metastatic dissemination of cancer cells.


Assuntos
Células Endoteliais/metabolismo , Cadeias Leves de Miosina/metabolismo , Metástase Neoplásica/prevenção & controle , Receptores de Esfingosina-1-Fosfato/fisiologia , Animais , Permeabilidade Capilar , Linhagem Celular Tumoral , Humanos , Lipossomos , Camundongos , Nanopartículas , Oxidiazóis/farmacologia , Fosforilação , Transdução de Sinais/fisiologia , Receptores de Esfingosina-1-Fosfato/agonistas , Tiofenos/farmacologia
4.
Exp Biol Med (Maywood) ; 239(3): 264-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24419462

RESUMO

Replacement of urinary bladder tissue with functional equivalents remains one of the most challenging problems of reconstructive urology over the last several decades. The gold standard treatment for urinary diversion after radical cystectomy is the ileal conduit or neobladder; however, this technique is associated with numerous complications including electrolyte imbalances, mucus production, and the potential for malignant transformation. Tissue engineering techniques provide the impetus to construct functional bladder substitutes de novo. Within this review, we have thoroughly perused the literature utilizing PubMed in order to identify clinical studies involving bladder reconstruction utilizing tissue engineering methodologies. The idea of urinary bladder regeneration through tissue engineering dates back to the 1950s. Many natural and synthetic biomaterials such as plastic mold, gelatin sponge, Japanese paper, preserved dog bladder, lyophilized human dura, bovine pericardium, small intestinal submucosa, bladder acellular matrix, or composite of collagen and polyglycolic acid were used for urinary bladder regeneration with a wide range of outcomes. Recent progress in the tissue engineering field suggest that in vitro engineered bladder wall substitutes may have expanded clinical applicability in near future but preclinical investigations on large animal models with defective bladders are necessary to optimize the methods of bladder reconstruction by tissue engineering in humans.


Assuntos
Regeneração , Engenharia Tecidual/métodos , Bexiga Urinária/fisiologia , Bexiga Urinária/cirurgia , Animais , Materiais Biocompatíveis , Cistectomia , Humanos , Alicerces Teciduais , Derivação Urinária
5.
J Biomed Mater Res A ; 100(3): 561-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22162300

RESUMO

The ultimate success of in vivo organ formation utilizing ex vivo expanded "starter" tissues relies heavily upon the level of vascularization provided by either endogenous or artificial induction of angiogenic or vasculogenic events. To facilitate proangiogenic outcomes and promote tissue growth, an elastomeric scaffold previously shown to be instrumental in the urinary bladder regenerative process was modified to release proangiogenic growth factors. Carboxylic acid groups on poly(1,8-octanediol-co-citrate) films (POCfs) were modified with heparan sulfate creating a heparan binding POCf (HBPOCf). Release of proangiogenic growth factors vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF-1) from HBPOCfs demonstrated an approximate threefold increase over controls during a 30-day time course in vitro. Atomic force microscopy demonstrated significant topological differences between films. Subcutaneous implantation of POCf alone, HBPOCf, POCf-VEGF, and HBPOCf-VEGF within the dorsa of nude rats yielded increased vascular growth in HBPOCf-VEGF constructs. Vessel quantification studies revealed that POCfs alone contained 41.1 ± 4.1 vessels/mm², while HBPOCf, POCf-VEGF, and HBPOCF-VEGF contained 41.7 ± 2.6, 76.3 ± 9.4, and 167.72 ± 15.3 vessels/mm², respectively. Presence of increased vessel growth was demonstrated by CD31 and vWF immunostaining in HBPOCf-VEGF implanted areas. Data demonstrate that elastomeric POCfs can be chemically modified and possess the ability to promote angiogenesis in vivo.


Assuntos
Citratos/química , Citratos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Polímeros/química , Polímeros/metabolismo , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Elasticidade , Feminino , Heparitina Sulfato/metabolismo , Implantes Experimentais , Peptídeos e Proteínas de Sinalização Intercelular/química , Teste de Materiais , Microscopia de Força Atômica , Ratos , Ratos Nus , Regeneração/efeitos dos fármacos , Resistência à Tração , Alicerces Teciduais/química
6.
Regen Med ; 6(5): 583-98, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21916594

RESUMO

Patients that are afflicted with dysfunctional urinary bladders due to developmental defect, trauma or malignant transformation have limited treatment options that would allow for complete recapitulation of the urinary bladder. Hence, novel tissue engineering techniques that are successful in regenerating functional urinary bladder tissue for replacement therapy would be invaluable. Current tissue engineering techniques are hampered by several problems including choice of appropriate cell type, inadequate development of new blood vessels to the regenerated tissue, tissue innervation and primitive bioscaffold design. This article describes the recent advances in stem cell biology and the material sciences to address these problems, and attempts to improve upon current tissue engineering techniques to make successful regeneration of urinary bladder tissue a reality.


Assuntos
Regeneração , Medicina Regenerativa/tendências , Engenharia Tecidual/tendências , Bexiga Urinária/fisiologia , Animais , Materiais Biocompatíveis , Hidrogéis , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Nanotecnologia , Medicina Regenerativa/métodos , Alicerces Teciduais , Bexiga Urinária/anatomia & histologia
7.
Regen Med ; 6(6): 757-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22050527

RESUMO

Many congenital and acquired anomalies affect the genitourinary tract, necessitating surgical intervention. Among these are bladder exstrophy, hypospadias, epispadias, posterior urethral valves, myelomeningocele, bladder carcinoma, urethral stricture disease, stress urinary incontinence, pelvic organ prolapse, vesicoureteral reflux and traumatic injuries of the urinary tract. Surgical repair of these conditions often utilizes skin, oral mucosa or bowel autograft or xenograft material to replace missing tissue or to augment inadequate tissues. These materials are often sufficient to restore the basic anatomy of the organ to which they are being grafted, but they usually do not completely restore normal function. In addition, postoperative complications are common, especially in the case of bladder augmentation or neobladder creation with autologous bowel. The complications and inherent limitations of these procedures may be mitigated by the availability of alternative tissue sources. Therefore, there has been a great deal of interest in developing tissues engineered from autologous materials, such as mature bladder cells, bone marrow-derived stem cells and adipose tissue. Ideally, an engineered tissue would restore or preserve the normal function of the organ it is augmenting or replacing. In addition, the engineered tissue should be nonimmunogenic to minimize rejection or foreign-body reactions. For the purposes of this article, we will focus on selection of scaffolding materials, selection of cell sources, and the current applications and potential future roles of tissue engineering in urology.


Assuntos
Engenharia Tecidual/métodos , Urologia/métodos , Animais , Materiais Biocompatíveis/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Polímeros/farmacologia , Alicerces Teciduais/química
8.
Biomaterials ; 32(6): 1574-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21093042

RESUMO

We report here on a bioactive hierarchically structured membrane formed by self-assembly. The membrane is formed with hyaluronic acid and peptide amphiphiles with binding affinity for heparin, and its hierarchical structure contains both an amorphous zone and a layer of fibrils oriented perpendicular to the membrane plane. The design of bioactivity is based on the potential ability to bind and slowly release heparin-binding growth factors. Human mesenchymal stem cells (hMSCs) seeded on these membranes attached and remained viable. Basic fibroblast growth factor (FGF2) and vascular endothelial growth factor (VEGF) were incorporated within the membrane structure prior to self-assembly and released into media over a prolonged period of time (14 days). Using the chicken chorioallantoic membrane (CAM) assay, we also found that these membranes induced a significant and rapid enhancement of angiogenesis relative to controls.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Membrana Corioalantoide/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Galinhas , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
9.
Biomaterials ; 31(24): 6207-17, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20488535

RESUMO

Bladder regeneration studies have yielded inconclusive results possibly due to the use of unfavorable cells and primitive scaffold design. We hypothesized that human mesenchymal stem cells seeded onto poly(1,8-octanediol-co-citrate) elastomeric thin films would provide a suitable milieu for partial bladder regeneration. POCfs were created by reacting citric acid with 1,8-octanediol and seeded on opposing faces with human MSCs and urothelial cells; normal bladder smooth muscle cells and UCs, or unseeded POCfs. Partial cystectomized nude rats were augmented with the aforementioned POCfs, enveloped with omentum and sacrificed at 4 and 10 weeks. Isolated bladders were subjected to Trichrome and anti-human gamma-tubulin, calponin, caldesmon, smooth muscle gamma-actin, and elastin stainings. Mechanical testing of POCfs revealed a Young's modulus of 138 kPa with elongation 137% its initial length without permanent deformation demonstrating its high uniaxial elastic potential. Trichrome and immunofluorescent staining of MSC/UC POCf augmented bladders exhibited typical bladder architecture with muscle bundle formation and the expression and retention of bladder smooth muscle contractile proteins of human derivation. Quantitative morphometry of MSC/UC samples revealed muscle/collagen ratios approximately 1.75x greater than SMC/UC controls at 10 weeks. Data demonstrate MSC seeded POCfs support partial regeneration of bladder tissue in vivo.


Assuntos
Células da Medula Óssea/citologia , Citratos/farmacologia , Ácido Cítrico/farmacologia , Elastômeros/farmacologia , Células-Tronco Mesenquimais/citologia , Músculo Liso/fisiologia , Polímeros/farmacologia , Regeneração/fisiologia , Bexiga Urinária/fisiologia , Animais , Compostos Azo , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Amarelo de Eosina-(YS) , Feminino , Imunofluorescência , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Verde de Metila , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Ratos , Ratos Nus , Regeneração/efeitos dos fármacos , Coloração e Rotulagem , Alicerces Teciduais/química , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA