Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(8): e2400125, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38747219

RESUMO

The essential functions of cartilage, such as shock absorption and resilience, are hindered by its limited regenerative capacity. Although current therapies alleviate symptoms, novel strategies for cartilage regeneration are desperately needed. Recent developments in three-dimensional (3D) constructs aim to address this challenge by mimicking the intrinsic characteristics of native cartilage using biocompatible materials, with a significant emphasis on both functionality and stability. Through fabrication methods such as 3D printing and electrospinning, researchers are making progress in cartilage regeneration; nevertheless, it is still very difficult to translate these advances into clinical practice. The review emphasizes the importance of integrating various fabrication techniques to create stable 3D constructs. Meticulous design and material selection are required to achieve seamless cartilage integration and durability. The review outlines the need to address these challenges and focuses on the latest developments in the production of hybrid 3D constructs based on biodegradable and biocompatible polymers. Furthermore, the review acknowledges the limitations of current research and provides perspectives on potential avenues for effectively regenerating cartilage defects in the future.


Assuntos
Materiais Biocompatíveis , Cartilagem , Nanoestruturas , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Cartilagem/fisiologia , Engenharia Tecidual/métodos , Biopolímeros/química , Materiais Biocompatíveis/química , Animais , Impressão Tridimensional
2.
Int J Biol Macromol ; 259(Pt 2): 129242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199540

RESUMO

Doxorubicin (Dox), a chemotherapeutic agent, encounters challenges such as a short half-life, dose-dependent toxicity, and low solubility. In this context, the present study involved the fabrication of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) bearing P(HPMA-s-APMA) copolymeric nanoparticles (P(HPMA-s-APMA) NPs) and their investigation for efficient delivery of Dox. Furthermore, the synthesized nanoparticles (NPs) were coated with chitosan (Cht) to generate positively charged nanoformulations. The prepared formulations were evaluated for particle size, morphology, surface charge analysis, percentage encapsulation efficiency (EE%), and drug release studies. The anticancer activity of Cht-P(HPMA-s-APMA)-Dox NPs was assessed in the HeLa cancer cell line. The prepared P(HPMA-s-APMA)-Dox NPs exhibited an average particle size of 240-250 nm. Chitosan decorated P(HPMA-s-APMA)-Dox NPs displayed a significant increase in particle size, and the zeta potential shifted from negative to positive. The EE% for Cht-P(HPMA-s-APMA)-Dox NPs was calculated to be 68.06 %. The drug release studies revealed a rapid release of drug from Cht-P(HPMA-s-APMA)-Dox NPs at pH 4.8 than pH 7.4, demonstrating the pH-responsiveness of nanoformulation. Furthermore, the cell viability assay and internalization studies revealed that Cht-P(HPMA-s-APMA)-Dox NPs had a high cytotoxic response and significant cellular uptake. Hence, the Cht-P(HPMA-s-APMA)-Dox NPs appeared to be a suitable nanocarrier for effective, and safe chemotherapy.


Assuntos
Acrilamidas , Quitosana , Metacrilatos , Nanopartículas , Humanos , Doxorrubicina/farmacologia , Polímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA