Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Exp Cell Res ; 358(2): 94-100, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28610838

RESUMO

BACKGROUND: Apoptosis plays a fundamental role in appropriate tissue development and function. Although expression of Bcl-2 has been reported during tooth and submandibular gland (SMG) development, the physiological role Bcl-2 plays during these processes has not been addressed. This study was performed to evaluate the impact of Bcl-2 expression on the formation and properties of tooth hard tissue, and saliva production. METHODS: Twenty-four mice (12 males and 12 females) were divided into three groups of eight (n=8): group A (Bcl-2 +/+), group B (Bcl-2 +/-), and group C (Bcl-2 -/-) and subjected to micro-CT analyses. The mineral content of first molars was analyzed by X-Ray diffraction (XRD) and scanning electron microscopy (SEM) color dot map. The surface microhardness was determined by Vickers test on labial surfaces of incisors. Saliva was collected from different groups of mice after subcutaneous injection of pilocarpine. RESULTS: Samples from Bcl-2 -/- mice showed significantly smaller micro-CT values, lower and poor crystallinity of hydroxyapatite (HA), and lowest surface micro hardness. SMG from Bcl-2 -/- mice showed remarkable reduction in size, consistent with reduced saliva accumulation. CONCLUSIONS: The absence of Bcl-2 expression in SMG did not affect the expression of other Bcl-2 family members. Thus, Bcl-2 expression influence on the formation and properties of tooth hard tissue, and saliva accumulation. SIGNIFICANCE: Bcl-2 expression has a significant impact on the mineralogical content of enamel crystals of tooth structure. Lack of Bcl-2 expression led to impaired production of enamel ACP crystals.


Assuntos
Genes bcl-2/fisiologia , Saliva/metabolismo , Dente/metabolismo , Animais , Esmalte Dentário/metabolismo , Feminino , Dureza/fisiologia , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Propriedades de Superfície , Temperatura
2.
Dent Traumatol ; 31(3): 196-201, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25571910

RESUMO

BACKGROUND/AIM: Elevation of pH and calcium ion release are of great importance in antibacterial activity and the promotion of dental soft and hard tissue healing process. In this study, we evaluated the effect of particle size on the elevation of pH and the calcium ion release from calcium silicate-based dental cements. MATERIAL AND METHODS: Twelve plastic tubes were divided into three groups, filled with white mineral trioxide aggregate (WMTA), WMTA plus 1% methylcellulose, and nano-modified WMTA (nano-WMTA), and placed inside flasks containing 10 ml of distilled water. The pH values were measured using a pH sensor 3, 24, 72, and 168 h after setting of the cements. The calcium ion release was measured using an atomic absorption spectrophotometer with same sample preparation method. Data were subjected to two-way analysis of variance (anova) followed by post hoc Tukey tests with significance level of P < 0.05. RESULTS: Nano-WMTA showed significant pH elevation only after 24 h (P < 0.05) compared with WMTA, and after 3, 24, and 72 h compared with WMTA plus 1% methylcellulose (P < 0.05). Nano-WMTA showed significantly higher calcium ion release values compared to the other two groups (P < 0.05). CONCLUSIONS: Nano-modification of WMTA remarkably increased the calcium ion release at all time intervals postsetting, which can significantly influence the osteogenic properties of human dental pulp cells and as a consequence enhance mineralized matrix nodule formation to achieve desirable clinical outcomes. However, the increase in pH values mainly occurred during the short time postsetting. Addition of 1% methylcellulose imposed a delay in elevation of pH and calcium ion release by WMTA.


Assuntos
Compostos de Alumínio/química , Compostos de Cálcio/química , Cálcio/química , Cimentos Dentários/química , Óxidos/química , Silicatos/química , Combinação de Medicamentos , Concentração de Íons de Hidrogênio , Teste de Materiais , Metilcelulose/química , Nanopartículas , Tamanho da Partícula , Espectrofotometria Atômica
3.
Am J Orthod Dentofacial Orthop ; 147(6): 719-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26038076

RESUMO

INTRODUCTION: The aim of this study was to evaluate the effect of exposure to radiofrequency electromagnetic fields emitted by mobile phones on the level of nickel in saliva. METHODS: Fifty healthy patients with fixed orthodontic appliances were asked not to use their cell phones for a week, and their saliva samples were taken at the end of the week (control group). The patients recorded their time of mobile phone usage during the next week and returned for a second saliva collection (experimental group). Samples at both times were taken between 8:00 and 10:00 pm, and the nickel levels were measured. Two-tailed paired-samples t test, linear regression, independent t test, and 1-way analysis of variance were used for data analysis. RESULTS: The 2-tailed paired-samples t test showed significant differences between the levels of nickel in the control and experimental groups (t [49] = 9.967; P <0.001). The linear regression test showed a significant relationship between mobile phone usage time and the nickel release (F [1, 48] = 60.263; P <0.001; R(2) = 0.577). CONCLUSIONS: Mobile phone usage has a time-dependent influence on the concentration of nickel in the saliva of patients with orthodontic appliances.


Assuntos
Telefone Celular , Ligas Dentárias/química , Níquel/análise , Aparelhos Ortodônticos , Saliva/química , Adulto , Análise de Variância , Ligas Dentárias/efeitos da radiação , Radiação Eletromagnética , Feminino , Humanos , Modelos Lineares , Masculino , Níquel/efeitos da radiação , Doses de Radiação , Fatores Sexuais , Espectrofotometria Atômica/métodos , Fatores de Tempo , Adulto Jovem
4.
Med Oral Patol Oral Cir Bucal ; 20(5): e525-31, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26034924

RESUMO

BACKGROUND: Many researchers have tried to enhance materials functions in different aspects of science using nano-modification method, and in many cases the results have been encouraging. To evaluate the histopathological responses of the micro-/nano-size cement-type biomaterials derived from calcium silicate-based composition with addition of nano tricalcium aluminate (3CaO.Al2O3) on bone healing response. MATERIAL AND METHODS: Ninety mature male rabbits were anesthetized and a bone defect was created in the right mandible. The rabbits were divided into three groups, which were in turn subdivided into five subgroups with six animals each based on the defect filled by: white mineral trioxide aggregate (WMTA), Nano-WMTA, WMTA without 3CaO.Al2O3, Nano-WMTA with 2% Nano-3CaO.Al2O3, and empty as control. Twenty, forty and sixty days postoperatively the animals were sacrificed and the right mandibles were removed for histopathological evaluations. Kruskal-Wallis test with post-hoc comparisons based on the LSMeans procedure was used for data analysis. RESULTS: All the experimental materials provoked a moderate to severe inflammatory reaction, which significantly differed from the control group (p< 0.05). Statistical analysis of bone formation and bone regeneration data showed significant differences between groups at 40- and 60- day intervals in all groups. Absence of 3CaO.Al2O3 leads to more inflammation and foreign body reaction than other groups in all time intervals. CONCLUSIONS: Both powder nano-modification and addition of 2% Nano-3CaO.Al2O3 to calcium silicate-based cement enhanced the favorable tissue response and osteogenesis properties of WMTA based materials.


Assuntos
Compostos de Alumínio/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Compostos de Cálcio/farmacologia , Cimentos Dentários/farmacologia , Óxidos/farmacologia , Silicatos/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Combinação de Medicamentos , Masculino , Nanotecnologia , Coelhos , Fatores de Tempo
5.
Int J Biol Macromol ; 213: 166-194, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35644315

RESUMO

The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.


Assuntos
Nanopartículas , Polímeros , Sistemas de Liberação de Medicamentos , Lipídeos/química , Lipossomos , Nanopartículas/química , Polímeros/química
6.
Arch Oral Biol ; 139: 105434, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525015

RESUMO

OBJECTIVE: This study was performed to evaluate the effect of type 1 diabetes mellitus (T1DM) on the microhardness of tooth enamel and dentine in mice. DESIGN: Seventy male C57BL/6 J mice were used in this study. Thirty-five mice were rendered diabetic by administration of streptozotocin (STZ), and the remaining animals received citrate buffer (normal/non-diabetic). In each group, specimens were divided into 7 subgroups of 5 mice based on the time points 0, 1, 4, 8, 12, 20, and 28 weeks. The microhardness value (MHV) of the second molars' enamel and root dentine were tested with a Vickers microhardness tester. Five specimens from each subgroup were evaluated for dentinal tubular density by scanning electron microscope (SEM) and color dot map analysis to determine the color intensity of strontium (Sr) and magnesium (Mg) by using ImageJ software. RESULTS: The MHV of enamel was significantly reduced in STZ specimens in time points of 12 weeks (STZ: 274.39 ± 15.42, normal: 291.22 ± 15.28), 20 weeks (STZ: 247.28 ± 19.65, normal: 290.68 ± 11.52), and 28 weeks (STZ: 232.87 ± 15.07, normal: 282.76 ± 10.36) (P < 0.05). When comparing the MHV of dentine in subgroups of the normal group, after 20 weeks (169.1 ± 7.5) and 28 weeks (168.6 ± 7.81), the MHV increased significantly (P < 0.05). However, in the STZ group, a significant reduction of MHV was noticed between 28 weeks (131.69 ± 6.2) specimens with other subgroups (P < 0.05). CONCLUSIONS: T1DM negatively affected enamel and dentine microhardness, and enamel was influenced much more negatively and rapidly compared with dentine in diabetic groups.


Assuntos
Dentina , Diabetes Mellitus Tipo 1 , Animais , Esmalte Dentário , Dureza , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Int J Pharm ; 599: 120421, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676992

RESUMO

Aiming to simultaneous target of methotrexate (MTX), as folate antagonist, and conferone (CON) in various cancer cells, the newly lipid/polymer hybrid nanoparticle containing an albumin targeted succinylchitosan shell and lipoid bilayer core composed of hydrogenated soy phosphatidylcholine and cholesterol was synthesized. The covalently conjugating albumin to the external surface of chitosan was accomplished using N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride and N- hydroxyl succinimide as an activating carboxylic group, and nanoliposomes were fabricated via thin film hydration-sonication method. The molecular structure of MTX@CON-targeted lipid/polymer hybrid nanoparticle (MTX@CON-TLPN) were characterized using FTIR spectroscopy, 1H NMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The newly nanoparticle with high encapsulation efficiency (85.12%, and 78.4%), acceptable loading capacity (9.8% and 4.6% for MTX and CON) and the stimuli responsiveness drug release behavior in simulated physiologic tumor tissue condition (pH 5.4, 40 °C) was successfully synthetized in the spherical shape with mean average size of approximately 290 nm and ζ-potential of +21 mv. The enhanced efficiency of the targeted nanoparticle was further confirmed using MTT endpoints, cell cycle modulation, apoptosis assessment, and cellular internalization assessments. Collectively, these findings establish the utility of our newly prepared nanoparticle for simultaneous delivery of multiple anti-cancer drugs.


Assuntos
Nanopartículas , Neoplasias , Albuminas , Cumarínicos , Portadores de Fármacos , Lipídeos , Metotrexato , Polietilenoglicóis , Polímeros
8.
J Endod ; 47(4): 612-620, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33359533

RESUMO

INTRODUCTION: Endodontic sealers play a vital role in the obturation of root canal space. The aim of this study was to evaluate the utility of a recently developed polyurethane expandable sealer (PES), along with its cytotoxicity and dimensional changes. METHODS: L929 fibroblasts and an cell viability assay (MTS assay) were used to determine the cytotoxicity of dental sealers (AH Plus [Dentsply Maillefer, Ballaigues, Switzerland], Sure-Seal Root [Sure Dent Corporation, Gyeonggi-do, South Korea], and the PES) at 24, 48, 72, and 96 hours. An advanced choroidal neovascularization model was used to assess the effect of these sealers on angiogenesis. Thirty-six extracted single-rooted human teeth were prepared and randomly divided into 3 groups (n = 12). Obturation was performed with gutta-percha and a sealer using lateral compaction as follows: group 1, AH Plus; group 2, Sure-Seal; and group 3, PES. The average depth of sealer penetration into dentinal tubules was measured with a scanning electron microscope. Data were analyzed using 1-way analysis of variance and post hoc Tukey tests (level of significance, P < .05). RESULTS: The values of MTS, choroidal neovascularization, and the penetration depth of PES were significantly higher than in other experimental groups (P < .05). The lowest values were noted in specimens of AH Plus, whereas the highest were detected in the PES group. CONCLUSIONS: PES showed promising results in terms of biocompatibility and dentinal tubule adaptation and penetration.


Assuntos
Materiais Restauradores do Canal Radicular , Cavidade Pulpar , Dentina , Resinas Epóxi , Guta-Percha , Humanos , Poliuretanos , República da Coreia , Obturação do Canal Radicular , Preparo de Canal Radicular
9.
Genes (Basel) ; 12(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356120

RESUMO

The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteína HMGA2/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Dendrímeros/metabolismo , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Proteína HMGA2/metabolismo , Humanos , Células MCF-7 , Metotrexato/farmacologia , Nylons/farmacologia , RNA Interferente Pequeno/genética
10.
J Endod ; 46(8): 1113-1119, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32593435

RESUMO

INTRODUCTION: This study evaluated the effect of different pH values of 4.4, 5.4, 6.4, 7.4, 8.4, and 9.4 on angiogenesis. METHODS: Endothelial cells were isolated from the mice molar teeth and placed in 42 Matrigel (Corning, NY)-coated wells, which were prepared and divided into 6 groups (n = 7). Synthetic tissue fluid was prepared and divided into 6 parts, and their pH values were adjusted to 4.4, 5.4, 6.4, 7.4, 8.4, and 9.4. A 2-mL volume from each group was diluted in the growth medium at a ratio of 1:3 and used for tubulogenesis assay. Forty-two 6-week-old mice in 6 groups (n = 7) were used for choroidal neovascularization (CNV). A 2-µL volume from each group or saline (control) was delivered by intravitreal injection on the day of laser application and 1 week later. Data on the number of nodes, the total length of the branches, and CNV areas (µm2) were determined using ImageJ software (National Institutes of Health, Bethesda, MD) and analyzed with 1-way analysis of variance and post hoc Tukey tests. The correlation was assessed between the tested variables. RESULTS: The number of nodes decreased with changes in pH values as follows: 6.4 > 5.4 > 7.4 > 8.4 > 9.4 > 4.4. The total branch length decreased with pH value changes as follows: 6.4 > 4.4 > 6.4 > 7.4 > 8.4 > 9.4, and the CNV areas decreased with pH value changes as follows: 6.4 > 5.4 > 4.4 > 7.4 > 8.4 > 9.4. CONCLUSIONS: Moderately acidic pH values (5.4 and 6.4) enhanced angiogenesis, whereas moderately alkaline pH values (8.4 and 9.4) suppressed angiogenesis.


Assuntos
Neovascularização de Coroide , Inibidores da Angiogênese , Animais , Modelos Animais de Doenças , Células Endoteliais , Concentração de Íons de Hidrogênio , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL
11.
Curr Eye Res ; 44(3): 275-286, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30383455

RESUMO

PURPOSE: Retinopathy of prematurity (ROP) is a condition of abnormal retinal vascularization with reduced levels of vascular endothelial growth factor (VEGF) causing vaso-obliteration (Phase I), followed by abnormal neovascularization from increased VEGF (Phase II). We hypothesized that intravitreal pro-angiogenic VEGF-A in microparticle form would promote earlier retinal revascularization in an oxygen-induced ischemic retinopathy (OIR) mouse model. MATERIALS AND METHODS: Wildtype mice (39) were exposed to 77% oxygen from postnatal day 7 (P7) to P12. VEGF-A165-loaded poly(lactic-co-glycolic acid) (PLGA) (n = 15) or empty PLGA (n = 14) microparticles were fabricated using a water-in-oil-in-water double emulsion method, and injected intravitreally at P13 into mice right eyes (RE). Left eyes (LE) were untreated. At P20, after retinal fluorescein angiography, vascular parameters were quantified. Retinal VEGF levels at P13 and flatmounts at P20 were performed separately. RESULTS: VEGF-A165-loaded microparticles had a mean diameter of 4.2 µm. with a loading level of 8.6 weight.%. Retinal avascular area was reduced in VEGF-treated RE (39.5 ± 9.0%) compared to untreated LE (52.6 ± 6.1%, p < 0.0001) or empty microparticle-treated RE (p < 0.001) and untreated LEs (p = 0.001). Retinal arteries in VEGF-treated RE were less tortuous than untreated LE (1.08 ± 0.05 vs. 1.18 ± 0.08, p < 0.001) or empty-microparticles-treated RE (p = 0.02). Retinal arterial tortuosity was similar in the LE of VEGF and empty microparticle-treated mice (P > 0.05). Retinal vein width was similar in VEGF-treated and empty microparticle-treated RE (P > 0.9), which were each less dilated than their contralateral LE (p < 0.01). VEGF levels were higher in P13 OIR mice than RA mice (p < 0.0001). Retinal flatmounts showed vaso-obliteration and neovascularization. CONCLUSIONS: Endogenous retinal VEGF is suppressed in OIR mice. Exogenous intravitreal VEGF-A165-loaded microparticles in OIR mice reduced retinal vaso-obliteration and accelerated recovery from vein dilation and arterial tortuosity. This may be beneficial in preventing Phase II ROP without systemic effects.


Assuntos
Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neovascularização Retiniana/tratamento farmacológico , Retinopatia da Prematuridade/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Portadores de Fármacos , Ensaio de Imunoadsorção Enzimática , Angiofluoresceinografia , Injeções Intravítreas , Camundongos Endogâmicos C57BL , Microesferas , Oxigênio/toxicidade , Neovascularização Retiniana/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Retinopatia da Prematuridade/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Korean Assoc Oral Maxillofac Surg ; 44(3): 93-102, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29963489

RESUMO

Angiogenesis is one of the essential processes that occur during wound healing. It is responsible for providing immunity as well as the regenerative cells, nutrition, and oxygen needed for the healing of the alveolar socket following tooth extraction. The inappropriate removal of formed blood clots causes the undesirable phenomenon of alveolar osteitis (AO) or dry socket. In this review, we aimed to investigate whether enhanced angiogenesis contributes to a more effective prevention of AO. The potential pro- or anti-angiogenic activity of different materials used for the treatment of AO were evaluated. An electronic search was performed in the PubMed, MEDLINE, and EMBASE databases via OVID from January 2000 to September 2016 using the keywords mentioned in the PubMed and MeSH (Medical Subject Headings) terms regarding the role of angiogenesis in the prevention of AO. Our initial search identified 408 articles using the keywords indicated above, with 38 of them meeting the inclusion criteria set for this review. Due to the undeniable role of angiogenesis in the socket healing process, it is beneficial if strategies for preventing AO are directed toward more proangiogenic materials and modalities.

13.
Tissue Cell ; 50: 31-36, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29429515

RESUMO

Dental pulp is a highly vascularized tissue with a high regenerative capacity. This is attributed to its unique blood supply and the presence of progenitor or postnatal dental pulp stem cells. Here we aimed to isolate and compare the angiogenic properties of endothelial cells (EC) prepared from mouse dental pulp and periodontal ligament (PDL). EC were isolated from 4-week-old wild type immorto mice. Mice were sacrificed and after mandible isolation, the molar and incisor teeth and the PDL from molar teeth were dissected. EC were prepared by collagenase digestion of tissues and affinity purification using magnetic beads coated with platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) antibody. EC prepared from incisor and molar pulps and PDL were examined for expression of appropriate markers by fluorescence-activated cell sorting (FACS) analysis. The proliferation, migration, and capillary morphogenesis of EC were evaluated. Ex vivo sprouting angiogenesis from various tissues was also compared. Data were analyzed at the level of significance of P<0.05. Pulp EC prepared from incisors proliferated and migrated significantly faster than molar and PDL EC (P<0.05). In addition, molar and PDL EC formed a more extensive capillary network when plated on Matrigel. This is consistent with the lower proliferative and migratory characteristics of these cells compared with incisor EC (P<0.05). However, PDL tissue showed significantly more sprouting area than molar and incisor pulp tissues (P<0.05). Thus, pulp EC from molar and incisor and PDL EC present different proangiogenic properties. Collectively our results suggest that EC from different tooth tissue have unique characteristics related to their target tissue and function.


Assuntos
Polpa Dentária/citologia , Células Endoteliais/citologia , Neovascularização Fisiológica/genética , Ligamento Periodontal/citologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Polpa Dentária/crescimento & desenvolvimento , Citometria de Fluxo , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Camundongos , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Ligamento Periodontal/imunologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
14.
J Endod ; 44(5): 773-779, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29602530

RESUMO

INTRODUCTION: This study intended to evaluate the angiogenic properties of vital pulp therapy materials including white mineral trioxide aggregate (WMTA), calcium hydroxide (Ca[OH]2), Geristore (Den-Mat, Santa Maria, CA), and nano WMTA biomaterials. METHODS: WMTA, Ca(OH)2, Geristore, and nano WMTA disks were prepared, dispersed into 2 mL Milli-Q (Millipore, ThermoFisher, Hanover Park, IL) distilled water, and centrifuged to obtain 2 mL supernatant elution. Thirty-five wells of polyethylene glycol hydrogel arrays were prepared and divided into 5 groups of 7 (n = 7). Mice molar endothelial cells (ECs) were placed on hydrogel arrays. The elution prepared from each sample was diluted in growth medium (1:3) and added to the hydrogel arrays. The EC medium alone was used for the control. For the choroidal neovascularization (CNV) model, thirty-five 6-week-old female mice were lasered and divided into 5 groups, and elution from each sample (2 µL) or saline (control) was delivered by intravitreal injection on the day of the laser treatment and 1 week later. The mean number of nodes, the total length of the branches in the hydrogel arrays, and the mean area of CNV were calculated using ImageJ software (National Institutes of Health, Bethesda, MD) and analyzed by 1-way analysis of variance and post hoc Tukey honest significant difference tests. RESULTS: The comparison of results regarding the number of nodes showed the values of control > Geristore > nano WMTA > WMTA > Ca(OH)2. Regarding the total branch length and the CNV area, the comparison of results showed values of Geristore > control > nano WMTA > WMTA > Ca(OH)2. CONCLUSIONS: All tested materials showed minimal antiangiogenic activity, whereas Geristore and nano WMTA showed a higher proangiogenic activity than WMTA and Ca(OH)2.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Hidróxido de Cálcio/farmacologia , Neovascularização de Coroide/induzido quimicamente , Polpa Dentária/metabolismo , Cimentos de Ionômeros de Vidro/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Óxidos/farmacologia , Resinas Sintéticas/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Silicatos/farmacologia , Animais , Combinação de Medicamentos , Feminino , Hidrogéis , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas , Polietilenoglicóis , Análise Serial de Tecidos/métodos
15.
Eur Endod J ; 3(1): 55-60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32161856

RESUMO

OBJECTIVE: To evaluate the effects of deionised water, blood, phosphate-buffered saline (PBS) and a new anti-corrosive solution based on methoxy propyl amine (MOPA) on the cyclic fatigue resistance of endodontic NiTi rotary instruments under in vitro conditions. METHODS: Forty ProTaper F1 files were provided and divided to four groups (n=10). Samples were first autoclaved and then stored in deionised water, blood, PBS or MOPA for 24 hours. Cyclic fatigue was tested with a custom-made stainless-steel block including artificial canals (curvature angle=30 degree, radius of curvature=5 mm). After immersion in test solutions, samples were rotated 300 rpm until fracture occurred. The number of cycles to failure (NCF) was calculated using recorded fracture time. RESULTS: Data were analysed by the Kolmogorov-Smirnov, Levene, ANOVA and Scheffe statistical tests. Samples in blood group showed the lowest and samples in MOPA group showed the highest NCF values. Significant difference was observed between groups (P=0.001). NCF value of PBS group was significantly more than the NCF values of samples in blood and deionised water groups (P<0.05). CONCLUSION: The tested novel anti-corrosive solution significantly increased the fracture resistance of the endodontic NiTi rotary instruments by reducing the cyclic fatigue. In contrast, blood and deionised water caused more corrosion and resulted in earlier file fracture.

16.
J Clin Diagn Res ; 11(8): ZC116-ZC119, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28969288

RESUMO

INTRODUCTION: Calcium silicate-based cements physical properties is influenced by environmental changes. AIM: Here, we intended to evaluate the effect of storage medium on surface porosity of root Mineral Trioxide Aggregate (MTA) and Biodentine cement. MATERIALS AND METHODS: A total of 40 polyethylene tubes were selected and divided into two groups: Group A (MTA) and Group B (Biodentine). Each group was subdivided into two subgroups (n=10). In subgroups A1 and B1, tubes were transferred to Distilled Water (DW), while samples of subgroup A2 and B2 were transferred to Synthetic Tissue Fluid (STF) as storage medium and samples were stored for three days. All specimens were then placed in a desiccator for 24 hours and then subject to surface porosity evaluation by Scanning Electron Microscopy (SEM) at ×500, ×1000, ×2000 and ×5000 magnifications. The number and the surface porosities were determined by Image J analysis. Data were analyzed by ANOVA at level of significance of p<0.05. RESULTS: The lowest surface porosity was observed in MTA samples stored in STF and the highest was in Biodentine samples stored in DW. Significant differences were noted between groups and subgroups of each group (p< 0.05). MTA samples stored in DW and STF showed significantly lower surface porosities compared to Biodentine samples (p < 0.05). CONCLUSION: Storage medium can drastically affect the surface porosity of tested calcium silicate-based cements. However, MTA showed lower surface porosity compared to Biodentine cement, which can result in lower microleakage in applied area.

17.
Dent Mater J ; 36(1): 8-18, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27773894

RESUMO

Calcium silicate-based cements have superior sealing ability, bioactivity, and marginal adaptation, which make them suitable for different dental treatment applications. However, they exhibit some drawbacks such as long setting time and poor handling characteristics. To overcome these limitations calcium silicates are engineered with various constituents to improve specific characteristics of the base material, and are the focus of this review. An electronic search of the PubMed, MEDLINE, and EMBASE via OVID databases using appropriate terms and keywords related to the use, application, and properties of calcium silicate-based cements was conducted. Two independent reviewers obtained and analyzed the full texts of the selected articles. Although the effects of various constituents and additives to the base Portland cement-like materials have been investigated, there is no one particular ingredient that stands out as being most important. Applying nanotechnology and new synthesis methods for powders most positively affected the cement properties.


Assuntos
Compostos de Cálcio , Cimentos Dentários , Silicatos , Teste de Materiais
18.
J Clin Exp Dent ; 9(1): e71-e77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28149467

RESUMO

BACKGROUND: To evaluate the effect of dental amalgam and composite restorations on total antioxidant capacity (TAC) and calcium (Ca) ion concentration of unstimulated saliva. MATERIAL AND METHODS: Forty-eight children aged 6-10 years selected and divided into three groups of sixteen (8 males, 8 females). In group A and B, samples consisted of two class II dental composite or amalgam restorations, while in group C samples were caries-free (control group). Unstimulated saliva from all samples was collected and TAC was measured by spectrophotometry using an adaptation of 2, 2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay. The Ca ion level was estimated by an auto- analyzer. Data were analyzed with one- and two-way ANOVA test, at a p<.05 level of significance. RESULTS: Composite samples showed significantly higher TAC and lower Ca ion levels compared to amalgam and caries-free samples (p<.05). The TAC values showed only significant difference between groups (p<.05), while the Ca ion results showed significant differences within and between groups (p<.05). CONCLUSIONS: Dental composite restorations increased TAC and decreased Ca ion levels more than amalgam restorations in saliva. Gender is an effective factor in changes induced in oral cavity as females showed more emphatic reaction to dental filling materials than males. STATEMENT OF CLINICAL RELEVANCE: Patients who have dental restorations, especially dental composites, should pay more attention to their dental hygiene, because dental restorations can increase oxidative stress and decrease Ca ion level in saliva, which might jeopardize remineralization process of tooth structures after demineralization. Key words:Amalgam, caries, composite, saliva, total antioxidant capacity.

19.
Invest Ophthalmol Vis Sci ; 58(12): 5142-5150, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986592

RESUMO

Purpose: Intravitreal injection of antiangiogenic agents is becoming a standard treatment for neovascular retinal diseases. Sustained release of therapeutics by injecting colloidal carriers is a promising approach to reduce the injection frequency, which reduces treatment burdens and the risk of complications on patients. Such sustained release often requires carriers to have micrometer-scale dimension that, however, can potentially promote glaucoma and inflammation. Small, polycationic particles can be immobilized in vitreous through multiple cooperative ionic interactions with hyaluronic acid of the vitreous interior, but such particles are generally toxic. Here, we synthesized and examined a biocompatible dextran-based nanocarrier (<50 nm in diameter) conjugated with cationic peptides containing L-arginine with minimal toxicity, aiming to provide sustained release of therapeutic drugs in vitreous. Methods: We synthesized the nanocarriers with condensed cholesteryl dextran (CDEX) as core material. Cationic peptides containing 1 to 4 arginine groups, along with fluorescence tags, were conjugated to the CDEX surface. We monitored the carrier diffusion rate ex vivo and half-lives in vivo in rodent vitreous using fluorescence imaging. We evaluated the toxicity by histological examinations at the second, third, eighth, and thirty-sixth week. Results: The diffusion rate of nanocarriers was inversely related to zeta potential values in freshly isolated vitreous humor. We observed increased half-lives in vivo with increasing zeta potential (up to 240 days). Histological examinations confirmed no adverse effects on ocular morphology and organization. Conclusions: We demonstrated the potential of L-arginine peptide-conjugated nanocarriers toward safe and sustained therapeutic release system for posterior eye diseases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacocinética , Arginina/química , Ésteres do Colesterol/química , Dextranos/química , Portadores de Fármacos/farmacocinética , Corpo Vítreo/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Materiais Biocompatíveis , Portadores de Fármacos/química , Angiofluoresceinografia , Meia-Vida , Injeções Intravítreas , Nanopartículas , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
20.
Dent Mater J ; 35(5): 701-709, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27546854

RESUMO

This review intended to provide an overview of the effects of dental materials, used in dentin-pulp complex and dental pulp regeneration, on angiogenesis processes during regenerative endodontic procedures. An electronic search was performed in PubMed and MEDLINE databases via OVID using the keywords mentioned in the PubMed and MeSH headings for English language published articles from January 2005-April 2014 that evaluated the angiogenic properties of different dental materials used in regenerative endodontic procedures. Of the articles identified in an initial search, only 40 articles met the inclusion criteria set for this review. Vital pulp therapy materials might have positive effects on angiogenesis events, while most of the canal irrigating solutions and antibiotic pastes have anti-angiogenic activity except for EDTA. Future clinical studies will be helpful in defining the mechanisms of action for dental materials that promote or inhibit angiogenesis events at applied areas.


Assuntos
Materiais Biocompatíveis , Polpa Dentária , Neovascularização Fisiológica , Materiais Dentários , Necrose da Polpa Dentária/terapia , Humanos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA