Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Oral Maxillofac Surg ; 82(9): 1147-1162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38830601

RESUMO

BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds. PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties. STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded. PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures. MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells. COVARIATES: Not applicable. ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P < .05). RESULTS: Fourier transform infrared spectroscopy peak at 1490 cm-1 confirmed the presence of QAS on suture's surfaces with a significant increase (P < .05) in diameter (0.99 ± 0.5-mm) and weight (0.77 ± 0.02-mg) observed for 1% QAS groups treated at 40 °C. Non-coated samples heated at 25 °C had significantly (P < .05) less diameters (0.22 ± 0.03-mm) and weights (0.26 ± 0.06-mg). Highest tensile strength/modulus was observed for 0.5% QAS-coated samples which also had significantly higher antibacterial characteristics than other sutures (P < .05). QAS-coated sutures significantly increased M1 and M2 markers. CONCLUSION AND RELEVANCE: QAS coating conferred antibacterial action properties without compromising the physical and mechanical properties of the suture.


Assuntos
Materiais Revestidos Biocompatíveis , Ratos Wistar , Silanos , Suturas , Animais , Ratos , Masculino , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Silanos/química , Silanos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Teste de Materiais , Resistência à Tração , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/química , Anti-Infecciosos/farmacologia , Microscopia Eletrônica de Varredura , Microscopia Confocal , Propriedades de Superfície
2.
Odontology ; 105(1): 1-12, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27613193

RESUMO

Certain cell populations within periodontal tissues possess the ability to induce regeneration, provided they have the opportunity to populate the wound or defect. Guided regeneration techniques have been investigated for regenerating periodontal tissues and such therapies usually utilize barrier membranes. Various natural and synthetic barrier membranes have been fabricated and tested to prevent epithelial and connective tissue cells from invading while allowing periodontal cells to selectively migrate into the defect. This paper focuses on the literature relevant to the use and potential of resorbable collagen membranes in GBR procedures, sites of periodontal and intrabony defects, in cases of socket and alveolar ridge preservation and at implant sites. The results of their use in GBR procedures has shown them to be effective and comparable with non-resorbable membranes with regards to clinical attachment gain, probing depth reduction and defect bone filling. They have also shown to prevent epithelial ingrowth into the defect space during the initial wound healing phase postsurgically. Collagen membranes have also been used for root coverage and GBR procedures and have shown good success rates comparable to subepithelial connective tissue grafts and expanded-polytetrafluoroethylene (e-PTFE) membranes. The future for periodontal tissue engineering is very exciting with the use of barrier membranes expected to continue playing a critical role. However, long-term clinical trials are required to further evaluate and confirm the efficacy of the available collagen barrier membranes for periodontal and bone regeneration use.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis , Colágeno/uso terapêutico , Regeneração Tecidual Guiada Periodontal/métodos , Membranas Artificiais , Regeneração Óssea , Humanos , Politetrafluoretileno
3.
J Ayub Med Coll Abbottabad ; 28(3): 627-629, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28712254

RESUMO

Maxillary premolars exhibit variable root canal morphology, but it is quite rare to find three canals in their root system. The aim of this case report is to present the diagnosis and clinical management of a patient with anatomical variation of having three root canals in the maxillary first premolar. Three-canalled maxillary premolars are quite an endodontic challenge. A discussion is provided here to facilitate the early recognition of these canals, access cavity modifications for better intra-canal preparation and obturation procedures. Clinicians are required to be aware of the anatomical variations they may encounter when dealing with maxillary premolars and should be trained to apply this knowledge in the clinical scenario.


Assuntos
Dente Pré-Molar/anatomia & histologia , Raiz Dentária/anatomia & histologia , Dente Pré-Molar/diagnóstico por imagem , Humanos , Masculino , Maxila , Tratamento do Canal Radicular , Raiz Dentária/diagnóstico por imagem , Adulto Jovem
4.
Dent J (Basel) ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056983

RESUMO

(1) Introduction: Trust is a cornerstone of the patient-physician relationships. Unforeseen complications in the health care system could jeopardize patients' trust in their physicians. (2) Aim: This article presents a quantitative figure regarding foreseeing the necessity of a three-dimensional quantitative visualization of bone structure and concurrently preparing for an ancillary procedure by a dentist to successfully perform the surgery that could minimize unforeseen complications; (3) Materials and method: This retrospective study has been derived based on an analysis of 1134 patients who had received 4800 dental implants from January 2001 to August 2020, out of which 200 cases were randomly selected for this study. Each procedure during implant treatment was categorized as OPG (Orthopantomography) or OPG with CBCT as per all the procedures which included and were coded as follows, 1: Surgery & Restoration, 2: GBR (Guided Bone Regeneration), 3: GTR (Guided Tissue Regeneration), 4: Block Bone Graft, 5: Spreading, 6: Splitting, 7: Internal Sinus, 8: External Sinus, 9: PRF (Platelet Rich Fibrin). Any of the 200 cases in which implant placement could not have been performed for reasons related to a lack of CBCT were selected for this study. The surgery was aborted halfway through without implant placement in these cases due to a lack of bone quantity and/or lack of primary stability. These cases were registered for re-evaluation and statistical analysis; (4) Results: 7% of the cases that used OPG alone led the surgeon to unexpectedly abort in the middle of the surgery without implant placement. All (100%) of the patients who had CBCT during treatment planning were able to receive implants during the surgery. None of the patients left the surgery without receiving implants if CBCT was used (0%); (5) Discussion: Radiographic image quality is defined as the amount of information within the image that allows the radiologist to make a diagnostic decision with a particular level of certainty (Martin et al., 1999) and hence the importance of CBCT. The unexpected 7% of devastating situations for patients who started surgery but did not have implant placement led to [A] aborting the surgery, [B] procedural difficulties requiring an alternative treatment plan, [C] a negative impact on the patient's behavior, and [D] wanting to change doctor due to a lack of trust; (6) Conclusion: This study indicates that in implant dentistry patients' mistrust could be avoided by 7% if CBCT is obtained. It also shows the significance of cone-beam computed tomography as an adjunct to panoramic radiography during the diagnosis and treatment planning phase. The use of panoramic radiography alone can lead to a 7% likelihood of misdiagnosis. A lack of CBCT during treatment planning negatively affects the outcome of surgical procedures.

5.
Materials (Basel) ; 16(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837334

RESUMO

The aim of this study was to evaluate published data regarding riboflavin (RF) as a cross-linker for improved adhesive bond strength to dentin and to analyze previous studies for optimal concentration of riboflavin range suitable for dentin bond. Saliva and distilled water were used as storage media and aging time was 24 h and 6 months. Results of meta-analysis were synthesized using a statistical method of inverse variance in random effects with a 95% Confidence Interval (CI). Cochrane review manager 5.4.1 was used to determine results of the meta-analysis. In total, 3172 articles were found from search databases "PubMed", "Scopus", and "Google Scholar". Six of the fifteen studies were eligible for meta-analysis. Micro tensile strength shows significant improvement with the addition of riboflavin (p < 0.05) compared to without the addition of riboflavin from with 95% CI. A significant difference has been found in micro tensile bond strength between use of the riboflavin cross-linker and without use of the riboflavin crosslinker in the dentin adhesive system. With a 95% confidence interval (CI), the I2 for micro tensile strength was 89% with strong heterogeneity, Chi2 = 44.76, df = 5 (p < 0.00001), and overall effect size is Z = 2.22 (p = 0.03) after immediate aging. Chiang et al. 2013 shows maximum mean differences which is 38.50 [17.93-59.07]. After 6 months of aging in distilled water or artificial saliva micro tensile bond strength has been increased with the addition of riboflavin (p < 0.05). It can be clearly seen that pooled effect and 95% CI did not cross the line of no effect. With a 95% confidence interval (CI), the I2 for micro tensile strength was 96% with strong heterogeneity, Chi2 = 117.56, df = 5 (p < 0.00001), and overall effect size is Z = 2.30 (p = 0.02). Subgroup analysis proved a similar effect of distilled water and artificial saliva as storage media on micro tensile bond strength after incorporating riboflavin as a collagen crosslinker. An artificial saliva aged forest plot also showed considerable heterogeneity with I2 = 96%; Tau2 = 257.32; Chi2 = 94.37; df = 2 (p < 0.00001); test for overall effect, Z = 1.06 (p = 0.29). Riboflavin prior to or with bonding is recommended to improve the bonding of different adhesive systems.

6.
J Biomed Mater Res B Appl Biomater ; 108(6): 2670-2680, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32159274

RESUMO

Bone grafting procedures are commonly used to manage bone defects in the craniofacial region. Monetite is an excellent biomaterial option for bone grafting, however, it is limited by lack of osteoinduction. Several molecules can be incorporated within the monetite matrix to promote bone regeneration. The aim was to investigate whether incorporating bone forming drug conjugates (C3 and C6) within monetite can improve their ability to regenerate bone in bone defects. Bilateral bone defects were created in the mandible of 24 Sprague-Dawley rats and were then packed with monetite control, monetite+C3 or monetite+C6. After 2 and 4 weeks, post-mortem samples were analyzed using microcomputed tomography, histology and back-scattered electron microscopy to calculate the percentages of bone formation and remaining graft material. At 2 and 4 weeks, monetite with C3 and C6 demonstrated higher bone formation than monetite control, while monetite+C6 had the highest bone formation percentage at 4 weeks. There were no significant differences in the remaining graft material between the groups at 2 or 4 weeks. Incorporating these anabolic drug conjugates within the degradable matrix of monetite present a promising bone graft alternative for bone regeneration and repair in orthopedic as well as oral and maxillofacial applications.


Assuntos
Anabolizantes/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Mandíbula/anormalidades , Anabolizantes/efeitos adversos , Anabolizantes/química , Animais , Substitutos Ósseos , Transplante Ósseo/métodos , Fosfatos de Cálcio/efeitos adversos , Fosfatos de Cálcio/química , Sobrevivência de Enxerto , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
7.
J Periodontol ; 91(11): 1521-1531, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32100284

RESUMO

BACKGROUND: Deproteinized bovine bone mineral (DBBM) has been extensively studied and used for bone regeneration in oral and maxillofacial surgery. However, it lacks an osteoinductive ability. We developed two novel bone anabolic conjugated drugs, known as C3 and C6, of an inactive bisphosphonate and a bone activating synthetic prostaglandin agonist. The aim was to investigate whether these drugs prebound to DBBM granules have the potential to achieve rapid and enhanced bone regeneration. METHODS: Bilateral defects (4.3 mm diameter circular through and through) were created in mandibular angles of 24 Sprague-Dawley rats were filled with DBBM Control, DBBM with C3 or DBBM with C6 (n = 8 defects per group/ each timepoint). After 2 and 4 weeks, postmortem samples were analyzed by microcomputed tomography followed by backscattering electron microscopy and histology. RESULTS: DBBM grafts containing the C3 and C6 conjugated drugs showed significantly more bone formation than DBBM control at 2 and 4 weeks. The C6 containing DBBM demonstrated the highest percentage of new bone formation at 4 weeks. There was no significant difference in the percentage of the remaining graft between the different groups at 2 or 4 weeks. CONCLUSIONS: DBBM granules containing conjugated drugs C3 and C6 induced greater new bone volume generated and increased the bone formation rate more than the DBBM controls. This is expected to allow the development of clinical treatments that provide more predictable and improved bone regeneration for bone defect repair in oral and maxillofacial surgery.


Assuntos
Substitutos Ósseos , Preparações Farmacêuticas , Animais , Regeneração Óssea , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Bovinos , Membranas Artificiais , Minerais , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
8.
J Biomed Mater Res B Appl Biomater ; 108(1): 253-262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009177

RESUMO

Calcium phosphate-based biomaterials are extensively used for bone replacement and regeneration in orthopedic, dental, and maxillofacial surgical applications. The injury induced by surgical implantation of bone replacement graft materials initiates a cascade of host responses, starting with blood-biomaterial contact, protein adsorption on the material surface, blood coagulation, and leukocyte responses. During the initial acute inflammatory response, polymorphonuclear neutrophils (PMNs) and monocytes, abundant circulating leukocytes of the myeloid lineage, are recruited to the site of inflammation. In addition to responding to pathogenic challenges, these cells respond to particulate substances within the body including crystals of monosodium urate (MSU). Host responses toward grafts impact short- and long-term success in tissue engineering and regenerative applications. Although multinucleated osteoclasts, formed by monocyte/macrophage fusion, are generally thought to be responsible for resorption of implant biomaterials, the ability of different biomaterials to trigger PMNs, which are invariably present at the early stages after implant surgery, and are abundant in the oral cavity, has never been tested. In this article, we present analysis of the response of human blood-derived PMNs and monocytes toward brushite, monetite, and calcium polyphosphate (CPP) biomaterial substrates and compare this to the response to MSU crystals, the latter serving as a positive control. Employing multicolor flow cytometry to look at PMN and monocyte cell surface markers of activation to gauge the response to different biomaterials, we found that both types of myeloid cells are highly activated after exposure to brushite, monetite, and MSU but not CPP. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:253-262, 2020.


Assuntos
Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Leucócitos/metabolismo , Teste de Materiais , Polifosfatos/farmacologia , Humanos , Osteoclastos/metabolismo
9.
Int J Oral Maxillofac Implants ; 34(4): e51­e63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716148

RESUMO

PURPOSE: Achieving successful and predictable alveolar ridge augmentation in the vertical dimension is extremely challenging. Several materials have been investigated to achieve vertical ridge augmentation; however, the results are highly unpredictable. The collaborative team presenting this research has developed brushite- and monetite-based grafts that incorporate in their matrix a novel bone anabolic conjugate (C3) of a bisphosphonate and a potent bone-activating EP4 receptor agonist. The study objective was to investigate the potential of these graft formulations to achieve rapid, enhanced, and clinically significant bone regeneration in the vertical dimension. MATERIALS AND METHODS: Brushite and monetite grafts were fabricated and characterized for phase purity, porosity, compressive strength, and microstructural morphology. They were implanted in 12 rabbit calvaria for 12 weeks. Each group (n = 6): brushite control, brushite with C3, monetite control, and monetite with C3. Postmortem samples were retrieved and processed for analysis. The percentage bone volume, vertical bone height gained, and graft resorption were calculated and assessed. RESULTS: The brushite and monetite grafts containing C3 integrated well onto the calvarial bone surface, with new bone extending through the graft area (36% and 80%, respectively), while the C3 lacking grafts showed decreased surface integration and bone infiltration (28% and 38%, respectively). The C3 containing brushite and monetite grafts demonstrated bone growth vertically (1.8 mm and 2.7 mm, respectively) and improved graft resorption. CONCLUSION: The brushite- and monetite-based grafts loaded with the C3 conjugate resulted in greater de novo bone formation in the vertical dimension when compared with the grafts without the drug. However, the monetite grafts produced much more and predictable vertical height gain than was achieved with brushite grafts. The advantages of this new graft drug formulation in future would be to provide more predictable vertical bone regeneration, which will ultimately benefit patients undergoing dental implant placement.


Assuntos
Aumento do Rebordo Alveolar , Fosfatos de Cálcio , Crânio , Animais , Regeneração Óssea , Transplante Ósseo , Implantação Dentária Endóssea , Coelhos
10.
Acta Biomater ; 73: 547-558, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29660511

RESUMO

Titanium (Ti) dental implants are susceptible to bacterial infections and failure due to lack of proper epithelial seal. Epithelial cells establish a strong epithelial seal around natural teeth by the deposition of basal lamina (BL) proteins that adsorb on the tooth surface. This seal can even be re-established onto cementum or dentin following injury or periodontal therapy. However, it is unclear how tooth surfaces promote this cell attachment and protein adsorption. Understanding the interactions between BL proteins and epithelial cells with dentin and Ti will facilitate the development of implant surfaces that promote the formation of an epithelial seal and improve the success of periodontal therapy and wound healing on natural teeth. To study these interactions, we used a surface proteomic approach to decipher the adsorption profile of BL proteins onto Ti and dentin, and correlated these adsorption profiles with in vitro interactions of human gingival fibroblasts and epithelial cells. Results showed that dentin adsorbed higher amounts of key BL proteins, particularly laminin and nidogen-1, and promoted more favorable interactions with epithelial cells than Ti. Next, dentin specimens were deproteinized or partially demineralized to determine if its mineral or protein component was responsible for BL adsorption and cell attachment. Deproteinized (mineral-rich) and partially demineralized (protein-rich) dentin specimens revealed BL proteins (i.e. laminin and nidogen-1) and epithelial cells interact preferentially with dentinal proteins rather than dentin mineral. These findings suggest that, unlike Ti, dentin and, in particular, dentinal proteins have a selective affinity to BL proteins that enhance epithelial cell attachment. STATEMENT OF SIGNIFICANCE: It is remains unclear why natural teeth, unlike titanium dental implants, promote the formation of an epithelial seal that protects them against the external environment. This study used a surface screening approach to analyze the adsorption of proteins produced by epithelial tissues onto tooth-dentin and titanium surfaces, and correlate it with the behaviour of cells. This study shows that tooth-dentin, in particular its proteins, has a higher selective affinity to certain adhesion proteins, and subsequently allows more favourable interactions with epithelial cells than titanium. This knowledge could help in developing new approaches for re-establishing and maintaining the epithelial seal around teeth, and could pave the way for developing implants with surfaces that allow the formation of a true epithelial seal.


Assuntos
Membrana Basal/química , Implantes Dentários , Dentina/química , Gengiva/fisiologia , Proteoma , Titânio/química , Adsorção , Materiais Biocompatíveis/química , Adesão Celular , Sobrevivência Celular , Células Epiteliais/citologia , Humanos , Microscopia Confocal , Peptídeos/química , Proteômica , Análise Espectral Raman , Propriedades de Superfície , Dente/fisiologia , Cicatrização
11.
J Periodontol ; 89(5): 586-595, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29856488

RESUMO

BACKGROUND: Products of internal defense systems, like pro-inflammatory cytokines, reactive oxygen species, and leukocytes, are released which attack periodontal bacteria in periodontitis, but at the same time, lead to tissue destruction as well. We hypothesize that resveratrol derivative-rich melinjo seed extract (MSE), an edible plant extract that has antioxidant properties, should promote healing of periodontal bone loss and modulating immune-inflammatory systems that leads periodontal tissue destruction. METHODS: We used an experimentally induced periodontitis (EP) model in mice. Ligatures were placed first for development of EP (15 days). MSE was intraperitoneally administrated (0.001% (w/w)) to reverse bone loss that had already occurred in established EP and mice were then sacrificed (day 17, 20 and 22). RESULTS: Morphometric outcomes revealed lower bone-loss in the MSE groups compared to control. Immunohistochemistry assays demonstrated lower oxidative stress in MSE groups. MSE also inhibited M-CSF/sRANKL mediated osteoclast formation and down-regulated osteoclast activity. CONCLUSIONS: Treatment with MSE in EP actually caused healing of bone, and these effects are probably related to decreases in local oxidative damage and osteoclast activity. Given MSE's positive effects on osteodifferentiation as well, these findings suggest that MSE could be a useful therapeutic agent for the management of periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Modelos Animais de Doenças , Camundongos , Osteoclastos , Extratos Vegetais , Resveratrol
12.
Eur J Dent ; 11(1): 135-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435381

RESUMO

After tooth loss, an individual may seek tooth replacement so that his/her function and esthetics could be restored. Clinical prosthodontics, during the past decade, has significantly improved and developed according to the advancements in the science and patient's demands and needs. Conventional options in prosthodontics for substituting a missing single tooth include the removable partial denture, partial and full coverage bridgework, and resin-bonded bridgework. Dental implants have gained increasing popularity over the years as they are capable of restoring the function to near normal in both partial and completely edentulous arches. With substantial evidence available, fixed implant-supported prosthesis are fully acknowledged as a reliable treatment option for the replacement of single or multiple missing teeth nowadays. While dental implants are increasingly becoming the choice of replacement for missing teeth, the impediments associated with them are progressively emerging too.

13.
Acta Biomater ; 53: 526-535, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28213100

RESUMO

Dicalcium phosphate cements (brushite and monetite) are resorbable biomaterials with osteoconductive potential for bone repair and regeneration that have yet to gain widespread commercial use. Brushite can be converted to monetite by heat treatments additionally resulting in various changes in the physico-chemical properties. However, since conversion is most commonly performed using autoclave sterilisation (wet heating), it is uncertain whether the properties observed for monetite as a result of heating brushite under dry conditions affect resorption and bone formation favourably. This study was designed to produce monetite grafts of differing physical form by autoclaving and dry heating (under vacuum) to be compared with brushite biomaterials in an orthotopic pre-clinical implantation model in rabbit for 12weeks. It was observed that monetite grafts had higher porosity and specific surface area than their brushite precursors. The autoclaved monetite grafts had compressive strength reduced by 50% when compared with their brushite precursors. However, the dry heat converted monetite grafts had compressive strength comparable with brushite. Results from in vivo experiments revealed that both types of monetite graft materials resorbed faster than brushite and more bone formation was achieved. There was no significant difference in the amount of bone formed between the two types of monetite grafts. The implanted brushite grafts underwent phase transformation to form hydroxyapatite, which ultimately limited bioresorption. However, this was not observed in both types of monetite grafts. In summary, both autoclaving and dry heating the preset brushite cement grafts resulted in monetite biomaterials which were more resorbable with potential to be investigated and optimized for orthopaedic and maxillofacial bone repair and regeneration applications. STATEMENT OF SIGNIFICANCE: We present in this original research article a comparison between dicalcium phosphate cement based grafts (brushite and 2 types of monetite grafts prepared by wet and dry thermal processing) with regards to resorption and bone formation in vivo after orthotopic implantation in rabbit condylar femural region. To the best of our knowledge this is the first in vivo study that reports a comparison resorption and bone formation using brushite and two types of monetite biomaterials. Also, we have included in the manuscript a summary of all the in vivo studies performed on brushite and monetite biomaterials to date. This includes cement composition, physical properties (porosity and surface area), implantation and histomorphometrical details such as animal species, site of implantation, observation period, percentage bone tissue formation and residual graft material. In addition, we calculated the percentage resorption of graft materials based upon various implantation sites and included that into the discussion section. The results of this original research provides greater understanding of the resorption processes of dicalcium phosphate based grafts, allowing preparation of bone substitute materials with more predictable resorption profiles in future.


Assuntos
Implantes Absorvíveis , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Fêmur/crescimento & desenvolvimento , Osteogênese/fisiologia , Absorção Fisico-Química , Animais , Transplante Ósseo/métodos , Composição de Medicamentos/métodos , Fêmur/citologia , Masculino , Teste de Materiais , Coelhos
14.
Mater Sci Eng C Mater Biol Appl ; 68: 267-275, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524021

RESUMO

Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4'-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37°C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86±1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87±3.16°). The ultimate tensile strength and elastic modulus of PEU (27±1MPa and 14±2MPa) and PEU-PDMS (8±1MPa and 26±1MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial cells from proliferating and migrating into the defect space by facing the soft tissue flaps. This study demonstrates the potential of a dual natured PEU barrier membrane for use in periodontal tissue engineering applications and further investigations are required.


Assuntos
Células Epiteliais/metabolismo , Gengiva/metabolismo , Regeneração Tecidual Guiada Periodontal/métodos , Membranas Artificiais , Poliuretanos , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Teste de Materiais , Poliuretanos/síntese química , Poliuretanos/química , Poliuretanos/farmacologia , Molhabilidade
15.
Acta Biomater ; 42: 411-419, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27449336

RESUMO

UNLABELLED: Iron chelators are known activators of the Hypoxia Includible Factor-1α (HIF-1α) pathway, a critical cellular pathway involved in angiogenic responses to hypoxia. Local delivery of these chelators has shown promise in bone tissue engineering strategies by inducing angiogenesis and osteogenesis. Hypoxic microenvironments are also a stimulus for osteoclast differentiation and resorptive activity, a process likely mediated by HIF-1α. In vitro, low doses of the iron chelator Deferoxamine (DFO) has shown to induce HIF-1α mediated osteoclast formation and function. However other studies have proposed an opposite in vitro effect likely through HIF independent mechanisms. To investigate use of these medications in bioceramic based bone tissue engineering strategies this study aimed to determine the in vivo effect of local delivery of iron chelators on bioceramic remodeling. A non-weight bearing cranial onlay model was used to assess monetite resorption and new bone formation in the presence or absence of a repeated delivery of two iron chelators, DFO and 1,10 Phenanthroline (PHT) at doses known to induce HIF. We found a marked reduction graft resorption and remodeling associated with iron chelation. This was correlated to a 3-fold reduction in osteoclast number at the bone graft interface. Iron is needed for mitochondrial biogenesis during osteoclastic differentiation and reducing extracellular iron levels may inhibit this process and possibly overpower any HIF induced osteoclast formation. Our findings suggest that these inexpensive and widely available molecules may be used to locally reduce bioceramic scaffold resorption and encourages future investigations of iron chelators as bone anti-resorptive agents in other clinical contexts. STATEMENT OF SIGNIFICANCE: Low doses of iron chelators can induce angiogenesis and osteogenesis in repairing bone by stimulating the oxygen sensitive gene; hypoxia inducible factor. These medications have potential to augment bioceramic based bone tissue engineering strategies without the downsides of protein-based growth factors. HIF activation is also known to stimulate osteoclast-mediated resorption and could potentially accelerate remodeling of biocermaics, however we have shown that the local delivery of iron chelation at doses known to induce HIF resulted in a reduction of monetite resorption and a significant decrease in osteoclast number at the bone graft interface. This maybe due to HIF independent mechanism. This is the first study to show a local effect of iron chelators in vivo on osteoclast-mediated resorption. This opens the potential of further study of these bifunctional medications to modulate resorption of biocermaics in environments where a prolonged presence of material is desired for graft site stability. Moreover these safe widely used medications can be explored to locally reduce osteoclasts in pathological bone resorption.


Assuntos
Substitutos Ósseos/farmacologia , Transplante Ósseo , Fosfatos de Cálcio/farmacologia , Sistemas de Liberação de Medicamentos , Quelantes de Ferro/administração & dosagem , Quelantes de Ferro/farmacologia , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Osso e Ossos/cirurgia , Imageamento Tridimensional , Implantes Experimentais , Cuidados Intraoperatórios , Coelhos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Tomografia Computadorizada por Raios X , Difração de Raios X
16.
Adv Healthc Mater ; 5(13): 1646-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214877

RESUMO

Vertical bone augmentation procedures are frequently carried out to allow successful placement of dental implants in otherwise atrophic ridges and represent one of the most common bone grafting procedures currently performed. Onlay autografting is one of the most prevalent and predictable techniques to achieve this; however, there are several well documented complications and drawbacks associated with it and synthetic alternatives are being sought. Monetite is a bioresorbable dicalcium phosphate with osteoconductive and osteoinductive potential that has been previously investigated for onlay bone grafting and it is routinely made by autoclaving brushite to simultaneously sterilize and phase convert. In this study, monetite disc-shaped grafts are produced by both wet and dry heating methods which alter their physical properties such as porosity, surface area, and mechanical strength. Histological observations after 12 weeks of onlay grafting on rabbit calvaria reveal higher bone volume (38%) in autoclaved monetite grafts in comparison with the dry heated monetite grafts (26%). The vertical bone height gained is similar for both the types of monetite grafts (up to 3.2 mm). However, it is observed that the augmented bone height is greater in the lateral than the medial areas of both types of monetite grafts. It is also noted that the higher porosity of autoclaved monetite grafts increases the bioresorbability, whereas the dry heated monetite grafts having lower porosity but higher surface area resorb to a significantly lesser extent. This study provides information regarding two types of monetite onlay grafts prepared with different physical properties that can be further investigated for clinical vertical bone augmentation applications.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos , Fosfatos de Cálcio , Crânio , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Masculino , Coelhos , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
17.
Eur J Dent ; 10(4): 583-588, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042280

RESUMO

Tooth wear is a process that is usually a result of tooth to tooth and/or tooth and restoration contact. The process of wear essentially becomes accelerated by the introduction of restorations inside the oral cavity, especially in case of opposing ceramic restorations. The newest materials have vastly contributed toward the interest in esthetic dental restorations and have been extensively studied in laboratories. However, despite the recent technological advancements, there has not been a valid in vivo method of evaluation involving clinical wear caused due to ceramics upon restored teeth and natural dentition. The aim of this paper is to review the latest advancements in all-ceramic materials, and their effect on the wear of opposing dentition. The descriptive review has been written after a thorough MEDLINE/PubMed search by the authors. It is imperative that clinicians are aware of recent advancements and that they should always consider the type of ceramic restorative materials used to maintain a stable occlusal relation. The ceramic restorations should be adequately finished and polished after the chair-side adjustment process of occlusal surfaces.

18.
Eur J Dent ; 9(4): 614-619, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26929705

RESUMO

Denture base resins are extensively used in dentistry for a variety of purposes. These materials can be classified as chemical, heat, light, and microwave polymerization materials depending upon the factor which starts the polymerization reaction. Their applications include use during denture base construction, relining existing dentures, and for fabrication of orthodontic removable appliances. There have been increased concerns regarding the safe clinical application of these materials as their biodegradation in the oral environment leads to harmful effects. Along with local side effects, the materials have certain occupational hazards, and numerous studies can be found in the literature mentioning those. The purpose of this article is to outline the cytotoxic consequences of denture base acrylic resins and clinical recommendations for their use.

20.
Acta Biomater ; 26: 338-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26300333

RESUMO

There are two types of DCP: dihydrated (brushite) and anhydrous (monetite). After implantation, brushite converts to hydroxyapatite (HA) which resorbs very slowly. This conversion is not observed after implantation of monetite cements and result in a greater of resorption. The precise mechanisms of resorption and degradation however of these ceramics remain uncertain. This study was designed to investigate the effect of: porosity, surface area and hydration on in vitro degradation and in vivo resorption of DCP. Brushite and two types of monetite cement based grafts (produced by wet and dry thermal conversion) were aged in phosphate buffered saline (PBS) and bovine serum solutions in vitro and were implanted subcutaneously in rats. Here we show that for high relative porosity grafts (50-65%), solubility and surface area does not play a significant role towards in vitro mass loss with disintegration and fragmentation being the main factors dictating mass loss. For grafts having lower relative porosity (35-45%), solubility plays a more crucial role in mass loss during in vitro ageing and in vivo resorption. Also, serum inhibited dissolution and the formation of HA in brushite cements. However, when aged in PBS, brushite undergoes phase conversion to a mixture of octacalcium phosphate (OCP) and HA. This phase conversion was not observed for monetite upon ageing (in both serum and PBS) or in subcutaneous implantation. This study provides greater understanding of the degradation and resorption process of DCP based grafts, allowing us to prepare bone replacement materials with more predictable resorption profiles.


Assuntos
Líquidos Corporais/química , Cimentos Ósseos/química , Transplante Ósseo/instrumentação , Fosfatos de Cálcio/química , Absorção Fisico-Química , Corrosão , Teste de Materiais , Porosidade , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA