Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 220: 115220, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608764

RESUMO

The nanoplastics released into the environment pose a critical threat to creatures, and thus it is necessary to remove them. However, their natural decomposition usually takes years or even decades, which raises an imminent demand for an efficient removal technology. Herein we report a core-shell CeOx@MnOx catalyst for enhancing ozonation of polystyrene nanoplastics in water. Ozonation achieves 31.67% molecular weight removal of polystyrene nanoplastics in the first 10 min reaction, which is increased to 51.67% in catalytic ozonation by MnOx and further improved to 73.33% in catalytic ozonation via CeOx@MnOx. The remarkable thing is the CeOx@MnOx could achieve almost 96.70% molecular weight removal after 50 min reaction. The specific catalytic mechanism is ozone decomposes into reactive oxygen radicals (•OH, •O2- and 1O2) after capturing electrons from MnOx, improving the polystyrene nanoplastics removal. Meanwhile, the Mn averaged valence state increases, making it harder to donate electrons to ozone. This can be alleviated by encapsulating the CeOx core in the MnOx, enabling electrons replenishment from the CeOx core to the MnOx shell, which is verified by the experiment and density functional theory calculations. The repeated experiment demonstrates the CeOx@MnOx possesses excellent stability, maintaining 95.25-96.70% removal efficiency of polystyrene nanoplastics. This research provides a possibility for the efficient removal of nanoplastics in water.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Água , Microplásticos , Poliestirenos , Poluentes Químicos da Água/análise , Catálise
2.
PLoS One ; 19(1): e0297087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271321

RESUMO

Using spline interpolation to select proportions of similar materials, a comparative analysis of the fracturing behavior of sandstone specimens and similar material specimens was conducted through Brazilian splitting tests under multi-path loading. The study revealed that during stepwise loading, both sandstone and similar materials exhibited memory effects and plastic deformation. However, under constant velocity loading, the relationship between force and displacement in sandstone showed linearity after compaction. Employing MATLAB optimization algorithms for the inversion of acoustic emission event information, the distribution of fracture points, and the evolution of cracks were analyzed. The findings indicated that under stepwise loading, both sandstone and similar materials exhibited banded distribution of peak frequencies, with sandstone concentrated in the mid-low-frequency range and similar materials leaning towards the low-frequency range. The amplitude-frequency characteristics of acoustic emission signals suggested that initially, sandstone produced low-frequency, low-amplitude signals. As cracks developed, these signals gradually transformed into high-frequency, high-amplitude signals, ultimately leading to macroscopic failure. The ringing counts and b-values of sandstone displayed an approximate "W" shape distribution, with a subsequent decrease in b-values during final failure. In contrast, the acoustic emission counts were inversely related to b-values. Similar materials exhibited slightly more acoustic emission counts than sandstone, with relatively lower b-values. The crack development process of both sandstone and similar materials was confirmed through these observations. From the perspective of section initiation and local damage, sandstone and similar materials exhibited similar failure characteristics. The proportions of quartz sand: cement: water = 9:1:0.9 in similar materials demonstrated the most similar characteristics to sandstone in terms of mechanical loading, acoustic emission features, and failure morphology. This suggests that these similar materials can be used as substitutes for sandstone in analogous simulation experiments. The study provides theoretical support for understanding rock fracture mechanisms, offers guidance for the selection and proportioning of similar materials, and holds significance for predicting and controlling rock fracture behavior in engineering applications.


Assuntos
Acústica , Fraturas Ósseas , Humanos , Algoritmos , Cimentos Ósseos , Brasil , Inversão Cromossômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA