Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 16(1): 91, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30428875

RESUMO

BACKGROUND: Microdialysis is promising technique for dynamic microbiochemical sampling from tissues. However, the application of typical aqueous perfusates to liposoluble substances is limited. In this study, a novel microemulsion (ME)-based isotonic perfusate (RS-ME) was prepared to improve the recovery of liposoluble components using microdialysis probes. RESULTS: Based on pseudo-ternary phase diagrams and comparisons of the ME area, Kolliphor® EL and Transcutol® P were selected as the surfactant and co-surfactant, respectively, with a weight ratio (Km) of 2:1 and ethyl oleate as the oil phase. The ME was mixed with Ringer's solution at a 1:6 ratio (v/v) to obtain the isotonic RS-ME. The droplet size distribution of the ME in RS-ME was 78.3 ± 9.2 nm, with a zeta potential of - 3.5 ± 0.3 mV. By microdialysis perfusion, RS-ME achieved higher recovery rates of the poorly water-soluble compounds evodiamine (EVO) and ruthenium (RUT), i.e., 58.36 ± 0.57% and 49.40 ± 0.57%, respectively, than those of 20% (v/v) PEG 400 Ringer's solution (RS-PEG) and 10% (v/v) ethanol Ringer's solution (RS-EtOH). In vivo microdialysis experiments confirmed that RS-ME captured EVO and RUT molecules around the dialysis membrane more efficiently and exhibited less spreading than RS-PEG and RS-EtOH. CONCLUSIONS: Owing to the nanosized droplets formed by lipid components in the RS-ME and the limited dispersion out of the dialysis membrane, we obtained good biocompatibility and reliable dialysis results, without affecting the tissue microenvironment. As a novel perfusate, RS-ME provides an easy and reliable approach to the microdialysis sampling of fat-soluble components.


Assuntos
Soluções Isotônicas/química , Microdiálise/métodos , Quinazolinas/química , Solução de Ringer/química , Rutênio/química , Animais , Portadores de Fármacos , Emulsões , Fibroblastos/metabolismo , Humanos , Lipídeos/química , Masculino , Membranas Artificiais , Nanopartículas/química , Ácidos Oleicos/química , Tamanho da Partícula , Perfusão , Polietilenoglicóis/química , Ratos Sprague-Dawley , Absorção Cutânea , Solubilidade , Tensoativos/química
2.
J Pharm Sci ; 103(10): 3120-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070929

RESUMO

This study investigated the effect of skin viability on its permeability to psoralen delivered by ethosomes, as compared with liposomes. With decreasing skin viability, the amount of liposome-delivered psoralen that penetrated through the skin increased, whereas skin deposition of psoralen from both ethosomes and liposomes reduced. Psoralen delivery to human-immortalized epidermal cells was more effective using liposomes, whereas delivery to human embryonic skin fibroblast cells was more effective when ethosomes were used. These findings agreed with those of in vivo studies showing that skin psoralen deposition from ethosomes and liposomes first increased and then plateaued overtime, which may indicate gradual saturation of intracellular drug delivery. It also suggested that the reduced deposition of ethosome- or liposome-delivered psoralen in skin with reduced viability may relate to reduced cellular uptake. This work indicated that the effects of skin viability should be taken into account when evaluating nanocarrier-mediated drug skin permeation.


Assuntos
Furocumarinas/administração & dosagem , Lipossomos , Pele/fisiopatologia , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Ratos
3.
Int J Nanomedicine ; 9: 669-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489470

RESUMO

This study aimed to improve skin permeation and deposition of psoralen by using ethosomes and to investigate real-time drug release in the deep skin in rats. We used a uniform design method to evaluate the effects of different ethosome formulations on entrapment efficiency and drug skin deposition. Using in vitro and in vivo methods, we investigated skin penetration and release from psoralen-loaded ethosomes in comparison with an ethanol tincture. In in vitro studies, the use of ethosomes was associated with a 6.56-fold greater skin deposition of psoralen than that achieved with the use of the tincture. In vivo skin microdialysis showed that the peak concentration and area under the curve of psoralen from ethosomes were approximately 3.37 and 2.34 times higher, respectively, than those of psoralen from the tincture. Moreover, it revealed that the percutaneous permeability of ethosomes was greater when applied to the abdomen than when applied to the chest or scapulas. Enhanced permeation and skin deposition of psoralen delivered by ethosomes may help reduce toxicity and improve the efficacy of long-term psoralen treatment.


Assuntos
Etanol/química , Ficusina/administração & dosagem , Ficusina/farmacocinética , Lipossomos/química , Microdiálise/métodos , Nanocápsulas/química , Absorção Cutânea/fisiologia , Administração Tópica , Animais , Ficusina/química , Masculino , Nanocápsulas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/química , Radiossensibilizantes/farmacocinética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
4.
Int J Pharm ; 460(1-2): 280-8, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24269286

RESUMO

The aim of this study was to develop and evaluate a novel topical delivery system for apigenin by using ethosomes. An optimal apigenin-loaded ethosome formulation was identified by means of uniform design experiments. Skin deposition and transdermal flux of apigenin loaded in ethosomes, liposomes, and deformable liposomes were compared in vitro and in vivo. The efficiency of apigenin encapsulation increased with an increase in the amount of phospholipids in ethosome formulations. Moreover, skin deposition and transdermal flux of apigenin improved with an increase in the levels of phospholipids (Lipoid S 75) and short-chain alcohols (propylene glycol and ethanol), but decreased with an increase in the ratio of propylene glycol to ethanol. Profiles of skin deposition versus time for ethosomes varied markedly between in vivo and in vitro studies compared with those of liposomes or deformable liposomes. Optimized ethosomes showed superior skin targeting both in vitro and in vivo. Moreover, they had the strongest effect on reduction of cyclooxygenase-2 levels in mouse skin inflammation induced by ultraviolet B (UVB) light. Therefore, apigenin-loaded ethosomes represent a promising therapeutic approach for the treatment of UVB-induced skin inflammation.


Assuntos
Anti-Inflamatórios/administração & dosagem , Apigenina/administração & dosagem , Sistemas de Liberação de Medicamentos , Etanol/química , Propilenoglicol/química , Pele/metabolismo , Administração Cutânea , Animais , Anti-Inflamatórios/química , Apigenina/química , Ciclo-Oxigenase 2/metabolismo , Dermatite/enzimologia , Técnicas In Vitro , Lipossomos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Raios Ultravioleta/efeitos adversos
5.
Int J Pharm ; 471(1-2): 449-52, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24907596

RESUMO

Recent reports have indicated that psoriasis may be caused by malfunctioning dermal immune cells, and psoralen ultraviolet A (PUVA) is an effective treatment for this chronic disease. However, conventional topical formulations achieve poor drug delivery across patches of psoriasis to their target sites. The present study describes the development of a novel psoralen transdermal delivery system employing ethosomes, flexible vesicles that can penetrate the stratum corneum and target deep skin layers. An in vitro skin permeation study showed that the permeability of psoralen-loaded ethosomes was superior to that of liposomes. Using ethosomes, psoralen transdermal flux and skin deposition were 38.89±0.32 µg/cm(2)/h and 3.87±1.74 µg/cm(2), respectively, 3.50 and 2.15 times those achieved using liposomes, respectively. The ethosomes and liposomes were found to be safe following daily application to rat skin in vivo, for 7 days. The ethosomes showed better biocompatibility with human embryonic skin fibroblasts than did an equivalent ethanol solution, indicating that the phosphatidylcholine present in ethosome vesicles improved their biocompatibility. These findings indicated that ethosomes could potentially improve the dermal and transdermal delivery of psoralen and possibly of other drugs requiring deep skin delivery.


Assuntos
Portadores de Fármacos/química , Ficusina/administração & dosagem , Terapia PUVA/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Psoríase/tratamento farmacológico , Pele/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Coloides , Fibroblastos/efeitos dos fármacos , Ficusina/efeitos adversos , Citometria de Fluxo , Humanos , Lipossomos , Fármacos Fotossensibilizantes/efeitos adversos , Ratos , Pele/efeitos dos fármacos , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA