Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 7(3): 867-875, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30648710

RESUMO

As an active natural ingredient extracted from the plant Rheum palmatum, emodin exhibits various pharmacological activities, especially the inhibition of tumor growth and migration. However, the anticancer activity of emodin is limited mainly due to its poor solubility and the lack of specific targeting. Herein, we employed liposome to load emodin into the lipid bilayer, and high-performance ferromagnetic iron oxide nanocubes were simultaneously encapsulated in the hydrophilic bilayer. The optimized magnetic liposomal emodin nanocomposite (MLE) exhibited a 24.1% increase in the efficiency of killing MCF-7 cancer cells at a low concentration of 16 µg mL-1 compared with that of the hydrophobic free emodin. A further 8.67% enhancement of the killing efficiency was obtained by magnetic targeting. Benefitting from the high ferromagnetism, the transverse relaxivity (r2) of MLE was measured to be as high as 392.9 mM-1 s-1. With guidance from the external magnetic field, the effective accumulation of this magnetic liposome in the tumor region of a 4T1 breast tumor bearing mouse was observed by both MR tracking and fluorescence imaging, which should be beneficial for decreasing the required therapeutic dose of emodin. Hemolysis, cytotoxicity and biochemistry assays confirmed the excellent biocompatibility of this magnetic liposomal carrier. The anti-tumor therapeutic effect of MLE was further investigated in vivo, and the tumor in the therapeutic group was almost eliminated, indicating that this magnetic liposomal emodin could serve as a novel magnetically guided theranostic nanoagent.


Assuntos
Emodina/química , Lipossomos/química , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Emodina/uso terapêutico , Emodina/toxicidade , Feminino , Compostos Férricos/química , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Camundongos Endogâmicos BALB C , Nanocompostos/química , Nanocompostos/toxicidade , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA