Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Microbiol ; 15: 1394745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268538

RESUMO

Cetaceans play a crucial role in marine ecosystems; however, research on their gastrointestinal microbiota remains limited due to sampling constraints. In this study, we collected hindgut samples from 12 stranded cetaceans and performed 16S rRNA gene amplicon sequencing to investigate microbial composition and functional potentials. Analysis of ZOTUs profiles revealed that the phyla Firmicutes, Proteobacteria, and Bacteroidetes dominated all hindgut samples. However, unique microbial profiles were observed among different cetacean species, with significant separation of gut microbiota communities according to biological evolutionary lineages. Different genera that contain pathogens were observed distinguishing delphinids from physeteroids/ziphiids. Delphinid samples exhibited higher abundances of Vibrio, Escherichia, and Paeniclostridium, whereas physeteroid and ziphiid samples showed higher abundances of Pseudomonas, Enterococcus, and Intestinimonas. Functional analysis indicated convergence in the gut microbiota among all cetaceans, with shared bacterial infection pathways across hindgut samples. In addition, a comparison of the gastrointestinal microbial composition between a stranded short-finned pilot whale (Globicephala macrorhynchus) and a stranded rough-toothed dolphin (Steno bredanensis) using 16S rRNA gene sequencing revealed distinct microbial community structures and functional capacities. To the best of our knowledge, this study represents the first report on the gastrointestinal microbiota of the pantropical spotted dolphin (Stenella attenuata), Blainville's beaked whale (Mesoplodon densirostris), and rough-toothed dolphin, with various comparisons conducted among different cetacean species. Our findings enhance the understanding of microbial composition and diversity in cetacean gastrointestinal microbiota, providing new insights into co-evolution and complex interactions between cetacean microbes and hosts.

2.
J Biomater Sci Polym Ed ; 34(8): 1090-1100, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476323

RESUMO

Bleeding complications are associated with substantial tissue morbidities and mortalities. Biomimetic composite materials that possess the ability to sufficiently stimulate and augment different physiological mechanisms of hemostasis are highly desirable to reduce bleeding-related casualties, which, however, are still largely under-explored. This study aims to develop a composite hemostatic system by combining collagen hydrogel with tissue factor (TF)-integrated liposome and silica nanoparticle, which could integrate the platelet plug-promoting capacity of collagen with the abilities of the latter two components to activate the extrinsic and intrinsic pathways of coagulation respectively. Several hydrogel compositions were synthesized and characterized. We show that lipidated TF and silica were evenly distributed in the collagen-based hydrogels, while exhibiting tunable release kinetics in simulated body fluid. Time-to-coagulation test revealed that each component in the TF-liposome/silica/collagen ternary hydrogels was hemostasis-active, and their combination showed enhanced and potent procoagulant performance, without detectable cytotoxicity against NIH/3T3 model cells. These results suggest that collagen hydrogels with embedded TF-liposome and silica nanoparticle may serve as a platform for an effective hemostatic composite that incorporates all the basic known pathways of coagulation.


Assuntos
Hemostáticos , Nanopartículas , Hidrogéis , Tromboplastina , Lipossomos , Dióxido de Silício , Hemostasia , Colágeno
3.
J Agric Food Chem ; 69(43): 12880-12890, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34634902

RESUMO

Lignin-carbohydrate complexes (LCCs) have recently emerged as natural products with pharmaceutical and nutraceutical potential. Here, we compared the structure of LCCs from ginkgo (GK, gymnosperms), wheat straw (WST, monocotyledons), and aspen white poplar (AW, dicotyledons). We also investigated the biotransformation of LCCs by intestinal microbiota in vitro. We found that human intestinal microbiota could use LCCs as a carbon source for growth, breaking resistant cross-linkages in LCCs to generate a plethora of short-chain fatty acids (SCFAs) and aromatic compounds with putative beneficial effects on human health. The yield of SCFAs reached 1837.8 ± 44.1 µmol/g using AW LCCs as a carbon source. The biomass of intestinal microbiota increased the fastest using GK LCCs. The greatest amounts of phenolics were present at 4 h in a WST LCCs fermentation system. Many phenolic acids with potential bioactivity were obtained after 24 h fermentation using each LCCs, such as ferulic acid.


Assuntos
Microbioma Gastrointestinal , Lignina , Biotransformação , Carboidratos , Ácidos Graxos Voláteis , Humanos , Lignina/metabolismo
4.
Mol Plant ; 13(2): 336-350, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31838037

RESUMO

The rubber tree, Hevea brasiliensis, produces natural rubber that serves as an essential industrial raw material. Here, we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-time sequencing (SMRT) and Hi-C technologies to anchor the ∼1.47-Gb genome assembly into 18 pseudochromosomes. The chromosome-based genome analysis enabled us to establish a model of spurge chromosome evolution, since the common paleopolyploid event occurred before the split of Hevea and Manihot. We show recent and rapid bursts of the three Hevea-specific LTR-retrotransposon families during the last 10 million years, leading to the massive expansion by ∼65.88% (∼970 Mbp) of the whole rubber tree genome since the divergence from Manihot. We identify large-scale expansion of genes associated with whole rubber biosynthesis processes, such as basal metabolic processes, ethylene biosynthesis, and the activation of polysaccharide and glycoprotein lectin, which are important properties for latex production. A map of genomic variation between the cultivated and wild rubber trees was obtained, which contains ∼15.7 million high-quality single-nucleotide polymorphisms. We identified hundreds of candidate domestication genes with drastically lowered genomic diversity in the cultivated but not wild rubber trees despite a relatively short domestication history of rubber tree, some of which are involved in rubber biosynthesis. This genome assembly represents key resources for future rubber tree research and breeding, providing novel targets for improving plant biotic and abiotic tolerance and rubber production.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta/genética , Hevea/genética , Borracha/metabolismo , Mapeamento Cromossômico , Domesticação , Euphorbia/classificação , Euphorbia/genética , Euphorbia/metabolismo , Hevea/classificação , Hevea/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos , Tetraploidia
5.
Gigascience ; 7(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202850

RESUMO

Background: Bamboo is one of the most important nontimber forestry products worldwide. However, a chromosome-level reference genome is lacking, and an evolutionary view of alternative splicing (AS) in bamboo remains unclear despite emerging omics data and improved technologies. Results: Here, we provide a chromosome-level de novo genome assembly of moso bamboo (Phyllostachys edulis) using additional abundance sequencing data and a Hi-C scaffolding strategy. The significantly improved genome is a scaffold N50 of 79.90 Mb, approximately 243 times longer than the previous version. A total of 51,074 high-quality protein-coding loci with intact structures were identified using single-molecule real-time sequencing and manual verification. Moreover, we provide a comprehensive AS profile based on the identification of 266,711 unique AS events in 25,225 AS genes by large-scale transcriptomic sequencing of 26 representative bamboo tissues using both the Illumina and Pacific Biosciences sequencing platforms. Through comparisons with orthologous genes in related plant species, we observed that the AS genes are concentrated among more conserved genes that tend to accumulate higher transcript levels and share less tissue specificity. Furthermore, gene family expansion, abundant AS, and positive selection were identified in crucial genes involved in the lignin biosynthetic pathway of moso bamboo. Conclusions: These fundamental studies provide useful information for future in-depth analyses of comparative genome and AS features. Additionally, our results highlight a global perspective of AS during evolution and diversification in bamboo.


Assuntos
Processamento Alternativo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poaceae/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/biossíntese , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA