Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(1): 134-9, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-29717601

RESUMO

Selective recognition of double strands DNA(ds DNA) has been a research hot spot in molecular biology and biomedicine for a couple decades. Based on the selective interaction between natural nucleic acid/synthetic molecular ligands and ds DNA, gene diagnosis, gene therapy and gene editing would be realized. Hairpin oligopolyamide is a molecular ligand with excellent cellular permeability and nucleases-resistance which can target ds DNA sequence with high affinity and specificity at minor groove. This paper reviews the binding properties and biomedical applications of hairpin oligopolyamide targeting ds DNA, which provide references for further design and application of hairpin oligopolyamide.


Assuntos
Conformação de Ácido Nucleico , Sequência de Bases , DNA/química , Ligantes , Nylons/química
2.
Environ Pollut ; 333: 121960, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271366

RESUMO

Microplastics (MPs), an emerging pollutant of concern, widely cooccurred with heavy metals in soil, however, little is known about the combined effects of the interactions of MPs and cadmium (Cd) on the soil-plant system. In this study, the combined effects of several types of MPs and soil Cd contamination on Brassica juncea growth, Cd uptake, and soil microbial carbon metabolism were investigated in a 50-day pot experiment. Aged polyethylene (PE), aged polypropylene (PP), biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) displayed moderate phytotoxicity, with reductions in leaf chlorophyll content and shoot biomass. Compared with the control treatment without MPs or B. juncea, B. juncea growth significantly increased the soil pH by 0.3 pH units, and the growth of B. juncea in the presence of biodegradable PBAT or PLA MPs increased the soil pH by an additional 0.4 or 0.6 pH units, respectively. The presence of PBAT or PLA MPs greatly reduced soil diethylenetriamine pentaacetic acid (DTPA)-extractable Cd concentrations and plant Cd accumulation. The Cd bioconcentration factor was higher in roots than shoots in all treatments except the treatment containing PBAT MPs. The average well color development (AWCD), an indicator of metabolic activity, was highest in the treatment with B. juncea alone and was reduced by both biodegradable and conventional MPs. The microbial utilization efficiency of esters and alcohols was enhanced in the treatment with PBAT MPs, whereas carboxylic acids were preferentially utilized in the treatment with PLA MPs. These findings indicate that co-exposure to MPs and Cd may alter soil microenvironmental characteristics such as soil pH, leading to changes in Cd bioavailability, plant growth and Cd accumulation, and the microbial community's capacity to metabolize carbon. These effects of MPs in soil warrant further exploration.


Assuntos
Microplásticos , Poluentes do Solo , Solo/química , Plásticos/toxicidade , Cádmio/análise , Poliésteres , Carbono , Poluentes do Solo/análise
3.
Chemosphere ; 287(Pt 4): 132412, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597650

RESUMO

Microplastics (MPs) in the environment would undergo extensive weathering, which can act as a vector affecting the accumulation of pollutants in organisms. However, the risk of organic pollutants adsorbed on aged MPs to marine organisms is poorly understood. This study revealed the contribution of aged polystyrene (PS) MPs to the total bioaccumulation of atorvastatin (ATV) and amlodipine (AML), and assessed the environmental risks via experimental and model analysis. The results showed that pharmaceuticals were more easily released in gastrointestinal fluids from aged MPs relative to that in simulated seawater. The hydrophobic pharmaceuticals were more bioaccessible than hydrophilic ones by organisms. Model analysis showed that ingestion of water and food were the most important uptake routes for pharmaceuticals in marine fish and seabirds, while aged PS MPs could decrease the bioaccumulation of pharmaceuticals (contributed for -2.9% and -1.2% for the total uptake of ATV, and -25.8% and -4.4% for AML), indicating the cleaning effect of aged MPs, and the potential higher exposure risks of pharmaceuticals in warm-blooded organisms than that in cold-blooded ones via ingested MPs. The study revealed the effect of aged MPs to the bioaccumulation of pharmaceuticals in marine organisms, and highlighted the combined risks of aged MPs and pharmaceuticals in the environment.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Organismos Aquáticos/metabolismo , Bioacumulação , Microplásticos , Plásticos , Poliestirenos/metabolismo , Poluentes Químicos da Água/análise
4.
Water Res ; 188: 116456, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039831

RESUMO

Plastic litters in marine environment usually contain varied types and contents of additives that can significantly affect the photochemical aging and fragmentation process of microplastics (MPs). This study investigated the photo aging process of two common polypropylene (PP) food packaging materials (i.e., meal box and tea cup) in artificial seawater within 12 d of ultraviolet (UV) irradiation. Results revealed that the aging of both plastic materials were critically inhibited compared with pure PP, indicating that PP food packaging materials in natural seawater may share longer aging time than pure ones. GC-MS analysis revealed that antioxidant Irgafos 168 (tris (2,4-di-tert-butylphenyl) phosphite) was the dominant additive in these plastic materials. Photo reaction between Irgafos 168 and hydroperoxide species on the surface of MPs to prevent the formation of hydroxyl radical was the possible mechanism for the inhibiting effects. After antioxidant was exhausted, its photo degradation products could become the dominant contributor to influence the aging process of MPs. This is the first work exploring the role of antioxidant on the aging process of PP MPs in simulated ocean environment. The findings could be of great help for unraveling the effect of antioxidants on the aging-related environmental risk of hydrocarbon plastics in ocean environment.


Assuntos
Envelhecimento da Pele , Poluentes Químicos da Água , Embalagem de Alimentos , Plásticos/análise , Polipropilenos , Água do Mar , Poluentes Químicos da Água/análise
5.
Water Res ; 195: 116980, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684678

RESUMO

Bisphenol A polycarbonate (BPA-PC) is a kind of widely used engineering plastics. However, excessive usage causes the production of plastic wastes, following property changes of polymers and high risks of released chemicals during outdoor weathering. In this study, we systematically investigated the photoaging behavior of PC microplastics (MPs) in aquatic environment and evaluated the potential risk of released intermediates. Light irradiation along with mechanical abrasion facilitated the fragmentation of PC MPs and stimulated photooxidative modification during 640 h of ultraviolet (UV) exposure. Continuous degradation of the polymer was accompanied with dramatic decline of molecular weight. Also, BPA was released from irradiated PC MPs with a trend of an initial rapid increase followed by a decrease versus the irradiation time, and the maximum concentration of dropped BPA was detected up to 652.80 ± 72.89 µg/g (43.39% and 56.61% respectively in particles and leachates). However, the releasing amount of BPA in the leachate merely occupied 2.7% of the total organic carbon (TOC) leached out, suggesting that a great number of unknown organic products were produced other than BPA. Liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis showed that these organic compounds forming MPs-derived dissolved organic matter (MPs DOM) were partly composed of 4,4'-dihydroxybenzophenone (DHB), p-hydroxybenzoic acid (p-HBA) and methyparaben (MeP), which would also contribute to the estrogenic activity. The degradation pathway of PC MPs was elaborated with the photolysis process of PC dimer and BPA, and the remarkable photoaging of PC MPs was mainly dominated by the generated reactive oxygen species (ROS). The findings of this study indicated that understanding the photoaging process of PC MPs was vital to evaluate their integral cumulative estrogenic activity in aquatic environment, and further highlighted the notable possible risks of plastic leachates to exposed biota.


Assuntos
Microplásticos , Plásticos , Compostos Benzidrílicos , Fotólise , Cimento de Policarboxilato , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA