Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(48): 16887-16893, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36408858

RESUMO

Nanogap antennas with strong electromagnetic fields of the "hot spot" in the gap region of two adjacent particles that can significantly improve the optical properties of fluorophores hold great potential for ultrasensitive bioanalysis. Herein, a DNA computation-mediated self-assembly of Au NBP dimer-based plasmonic nanogap antennas was designed for imaging of intracellular correlated dual disease biomarkers. It is worth noting that with the benefit from the electromagnetic fields of the "hot spot" in the gap region and strand displacement amplification, the fluorescence intensity can be enhanced ∼14.7-fold by Au NBP dimer-based plasmonic nanogap antennas. In addition, the AND-gate sensing mechanism was confirmed through monitoring the response of three designed nAP-PH1, m-PH1, and PH1 probes, the fluorescence recovery in different cell lines (Hela and L02), and inhibitor-treated cells, respectively. Furthermore, thanks to the "dual keys" activation design, such an "AND-gate" sensing manner can be used for ultrasensitive correlated multiplexed molecular imaging, demonstrating its feasible prospect in correlated multiplexed molecular imaging.


Assuntos
Computadores Moleculares , Corantes Fluorescentes , Polímeros , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA