Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(22): e2309589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105589

RESUMO

Achieving ultrabright fluorogens is a key issue for fluorescence-guided surgery (FGS). Fluorogens with aggregation-induced emission (AIEgens) are potential agents for FGS on the benefit of the bright fluorescence in physiological conditions. Herein, the fluorescence brightness of AIEgen is further improved by preparing the nanoparticle using a polystyrene-based matrix and utilizing it for tumor FGS with a high signal-to-background ratio. After encapsulating AIEgen into polystyrene-poly (ethylene glycol) (PS-PEG), the fluorescence intensity of the prepared AIE@PS-PEG nanoparticles is multiple times that of nanoparticles in 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly (ethylene glycol) (DSPE-PEG), a commonly used polymer matrix for nanoparticle preparation. Molecular dynamics simulations suggest that higher free energy is required for the outer rings of AIEgen to rotate in polystyrene than in the DSPE, indicating that the benzene rings in polystyrene can restrict the intramolecular motions of AIEgen better than the alkyl chain in DSPE-PEG. Fluorescence correlation microscopy detections suggest that the triplet excited state of AIEgens is less in PS-PEG than in DSPE-PEG. The restricted intramolecular motions and suppressed triplet excited state result in ultrabright AIE@PS-PEG nanoparticles, which are more conducive to illuminating tumor tissues in the intestine for FGS. The illumination of metastatic tumors in lungs by AIE@PS-PEG nanoparticles is also tried.


Assuntos
Poliestirenos , Poliestirenos/química , Fluorescência , Polietilenoglicóis/química , Humanos , Nanopartículas/química , Cirurgia Assistida por Computador/métodos , Simulação de Dinâmica Molecular , Animais , Corantes Fluorescentes/química
2.
J Control Release ; 368: 265-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423474

RESUMO

Combined photodynamic therapy (PDT) and photothermal therapy (PTT) not only effectively reduce the hypoxic resistance to PDT, but also overcome the heat shock effect to PTT. However, the residual phototherapeutic agents still produce reactive oxygen species (ROS) to damage normal tissue under sunlight after treatment, which induces undesirable side effects to limit their biomedical application. Herein, a facile strategy is proposed to construct a biodegradable semiconducting polymer p-DTT, which is constructed by thieno[3,2-b]thiophene modified diketopyrrolopyrrole and (E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene moieties, to avoid the post-treatment side effects of phototherapy. Additionally, p-DTT exhibits strong photoacoustic (PA) for imaging, as well as good ROS production capacity and high photothermal conversion efficiency for synergistic PDT and PTT, which has been confirmed by both in vitro and in vivo results. After phototherapy, p-DTT could be gradually oxidized and degraded by endogenous ClO-, and subsequently lose ROS production and photothermal conversion capacities, which can guarantee the post-treatment safety, and address above key limitation of traditional phototherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Fototerapia , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico
3.
Chem Asian J ; 18(10): e202300212, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37029595

RESUMO

Photodynamic therapy (PDT) is recognized to be a promising strategy for anticancer treatment. Considering the progressive application of PDT in clinical trials, highly efficient photosensitizers (PSs) are in strong demand. Aggregation-induced emission (AIE) based PSs are promising phototheranostic materials for tumor imaging and PDT due to their high fluorescence and photosensitizing efficiency. Herein, a PS, TPA-2BCP with AIE characteristics is developed by adopting an acceptor-π-donor-π-acceptor (A-π-D-π-A) structure. However, the accumulation of ionic PSs in the tumor is poor due to non-specific interactions with bio-molecules. Therefore, we use a carboxyl-rich polymer material, polyacrylate polyethylene glycol block copolymer (PEG-b-PAA) to encapsulate the cationic PSs into nanoparticles through ionic interactions. The cationic groups are blocked and the generated PS nanoparticles can accumulate well in the tumor site in vivo. Meanwhile, the photosensitizing efficiency of the PS is further enhanced in the nanoparticle format. The tumor growth can be obviously inhibited under 530 nm laser irradiation, demonstrating its potential application in antitumor PDT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Polímeros/química , Polietilenoglicóis/química , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio , Nanopartículas/química
4.
J Mater Chem B ; 9(25): 5047-5054, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34155493

RESUMO

With the rapid development of biology and nanotechnology, designing nanomaterials with intrinsic enzyme-like activities has attracted huge attention in recent years. Herein, for the first time, we use zein as a new protein precursor to prepare N-rich carbonized zein nanosheets (C-Zein) via facile pyrolysis. Zein is an inert, biodegradable and sustainable natural biopolymer. After high-temperature carbonization, zein can be converted into highly catalytically active C-Zein, which can possess excellent peroxidase- and oxidase-like catalytic activities. Such intrinsic enzyme-like activities of C-Zein are closely related to its graphitization degree, the ratio of graphitic nitrogen and the formation of disordered graphene. Intriguingly, C-Zein also exhibits high photothermal conversion efficiency in the near-infrared (NIR) region. Coupling their unique photothermal and catalytic properties, the as-prepared C-Zein can act as a robust agent for synergistic photothermal-catalytic cancer treatment under the irradiation of NIR light. We expect that this work paves the way to use zein for designing efficient artificial enzymes and accelerate further growth in exploring its new biomedical and pharmaceutical applications.


Assuntos
Biopolímeros/metabolismo , Nanoestruturas/química , Fotoquimioterapia , Zeína/metabolismo , Biocatálise , Biopolímeros/química , Proliferação de Células , Sobrevivência Celular , Células HeLa , Humanos , Raios Infravermelhos , Tamanho da Partícula , Zeína/química
5.
Adv Mater ; 33(39): e2103497, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34387375

RESUMO

Immunotherapy has shown encouraging results in various cancers, but the response rates are relatively low due to the complex tumor immunosuppressive microenvironment (TIME). The presence of tumor-associated macrophages (TAMs) and tumor hypoxia correlates significantly with potent immunosuppressive activity. Here, a hemoglobin-poly(ε-caprolactone) (Hb-PCL) conjugate self-assembled biomimetic nano red blood cell (nano-RBC) system (V(Hb)) is engineered to deliver chemotherapeutic doxorubicin (DOX) and oxygen for reprogramming TIME. The Hb moiety of V(Hb)@DOX can bind to endogenous plasma haptoglobin (Hp) and specifically target the M2-type TAMs via the CD163 surface receptor, and effectively kill the cells. In addition, the O2 released by the Hb alleviates tumor hypoxia, which further augments the antitumor immune response by recruiting fewer M2-type macrophages. TAM-targeting depletion and hypoxia alleviation synergistically reprogram the TIME, which concurrently downregulate PD-L1 expression of tumor cells, decrease the levels of immunosuppressive cytokines such as IL-10 and TGF-ß, elevate the immunostimulatory IFN-γ, enhance cytotoxic T lymphocyte (CTL) response, and boost a strong memory response. The ensuing TAM-targeted chemo-immunotherapeutic effects markedly inhibit tumor metastasis and recurrence. Taken together, the engineered endogenous TAM-targeted biomimetic nano-RBC system is a highly promising tool to reprogram TIME for cancer chemo-immunotherapy.


Assuntos
Materiais Biomiméticos/química , Hemoglobinas/química , Nanoestruturas/química , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno B7-H1/metabolismo , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Oxigênio/metabolismo , Poliésteres/química , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA