Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Life Sci ; 79(11): 551, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36244032

RESUMO

Periodontal ligament (PDL) cells are a promising tool for periodontal regeneration therapy. Achieving a sufficient number of PDL cells is essential to PDL regeneration. In our study, appropriate flow shear stress (FSS, 1-6 dyn/cm2) promotes the proliferation of PDL cells. FSS remodels cytoskeleton and focal adhesion in a duration-dependent manner. FSS induces PDL cells to form the actin cap within 10 min, flattens the nuclei, and increases the nuclear pore size, which promotes nuclear translocation of Yes-associated protein (YAP). FSS activates p38, which plays a dual function in YAP regulation. p38 regulates the phosphorylation of Akt and cofilin, as well as induced F-actin polymerization to induce YAP activity. In addition, p38 inhibits pLATS and consecutively regulates angiomotin (AMOT) and YAP phosphorylation. AMOT competitively binds to F-actin and YAP to participate in FSS-mediated YAP nuclear translocation and cell proliferation. Taken collectively, our results provide mechanistic insights into the role of p38-AMOT-YAP in FSS-mediated PDL cells proliferation and indicate potential applications in dental regenerative medicine.


Assuntos
Actinas , Ligamento Periodontal , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Angiomotinas , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Sinalização YAP
2.
ACS Nano ; 18(12): 8777-8797, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488479

RESUMO

Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.


Assuntos
Vesículas Extracelulares , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polpa Dentária , Diferenciação Celular , Regeneração Óssea , Osteogênese , Células-Tronco , Ácido Hialurônico/farmacologia , Vesículas Extracelulares/metabolismo
3.
Adv Sci (Weinh) ; 10(24): e2301759, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37350493

RESUMO

Developing a multifunctional nanoplatform to achieve efficient theranostics of tumors through multi-pronged strategies remains to be challenging. Here, the design of the intelligent redox-responsive generation 3 (G3) poly(amidoamine) dendrimer nanogels (NGs) loaded with gold nanoparticles (Au NPs) and chemotherapeutic drug toyocamycin (Au/Toy@G3 NGs) for ultrasound-enhanced cancer theranostics is showcased. The constructed hybrid NGs with a size of 193 nm possess good colloidal stability under physiological conditions, and can be dissociated to release Au NPs and Toy in the reductive glutathione-rich tumor microenvironment (TME). The released Toy can promote the apoptosis of cancer cells through endoplasmic reticulum stress amplification and cause immunogenic cell death to maturate dendritic cells. The loaded Au NPs can induce the conversion of tumor-associated macrophages from M2-type to antitumor M1-type to remodulate the immunosuppressive TME. Combined with antibody-mediated immune checkpoint blockade, effective chemoimmunotherapy of a pancreatic tumor mouse model can be realized, and the chemoimmunotherapy effect can be further ultrasound enhanced due to the sonoporation-improved tumor permeability of NGs. The developed Au/Toy@G3 NGs also enable Au-mediated computed tomography imaging of tumors. The constructed responsive dendrimeric NGs tackle tumors through a multi-pronged chemoimmunotherapy strategy targeting both cancer cells and immune cells, which hold a promising potential for clinical translations.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Neoplasias Pancreáticas , Animais , Camundongos , Nanogéis , Ouro , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Oxirredução , Macrófagos , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 13(1): 516-533, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312268

RESUMO

Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/metabolismo , Polietilenoglicóis/química , Poliglactina 910/química , RNA Interferente Pequeno/metabolismo , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Carbocianinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Lipídeos/química , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , Poliésteres , Polietilenoglicóis/metabolismo , Polietilenoglicóis/toxicidade , Poliglactina 910/metabolismo , Poliglactina 910/toxicidade , Interferência de RNA , RNA Interferente Pequeno/genética , Transfecção
5.
Cytotechnology ; 74(3): 395-405, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35733699

RESUMO

Magnetic materials are now commonly used in dental clinics. These materials generally produce a static magnetic field (SMF). While it is known that SMF can affect cells' behaviors such as proliferation, migration, and differentiation, the mechanisms underlying these effects are still unclear. Our study investigates the role of the mitogen-activated protein (MAP) kinase pathway in SMF-induced proliferation, migration, osteogenic/odontogenic differentiation, and mineralization in human dental pulp stem cells (DPSCs). Human DPSCs were exposed to SMF of 1 mT and the phosphorylated MAP kinases were detected by Western blot analysis. Three MAP kinases inhibitors were pre-cultured with DPSCs and exposed to SMF for 24 h. Cell viability was analyzed using Cell Counting Kit-8. Cell migration was tested by a wound healing assay. Osteogenic/odontogenic differentiation was detected by ALP staining assay, ALP and DSPP Western blot analysis. Mineralization was studied by alizarin red staining analysis. SMF activated phosphorylation of c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK). The inhibition of JNK, P38, and ERK signaling decreased SMF-induced proliferation and migration. ERK and P38 play more important roles in SMF-induced ALP staining and protein expression. JNK was vital for SMF-induced DSPP expression. JNK, P38, and ERK all involved in SMF-mediated mineralization. Our study demonstrated that the MAPK pathway regulated SMF-induced proliferation, migration, osteogenic/odontogenic differentiation, and mineralization in human DPSCs.

6.
Cell Mol Bioeng ; 12(1): 85-97, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31719900

RESUMO

INTRODUCTION: Fluid shear stress (FSS) is the most common stress produced by mastication, speech, or tooth movement. However, how FSS regulates human periodontal ligament (PDL) cell proliferation and migration as well as the underlying mechanism remains unknown. METHODS: FSS (6 dyn/cm2) was produced in a flow chamber. Cell proliferation was tested by the 5-ethynyl-2'-deoxyuridine assay. Cell migration was tested by the wound healing assay. Gene and protein expression of platelet-derived growth factors (PDGFs) and matrix metalloproteinase (MMP)-2 were measured by reverse transcription-polymerase chain reaction and western blot analyses. RESULTS: We investigated the effect of 4 h of 6 dyn/cm2 FSS on proliferation and migration of PDL cells. FSS promoted PDL cell proliferation but inhibited migration. The gene and protein expression of PDGF receptor (PDGFR)-α and ß both decreased in response to FSS. Activating and inhibiting the PDGFRs did not affect the FSS-induced increase in cell proliferation. However, activating PDGFRs with PDGF-BB, which bound both PDGFR-α and ß, and PDGF-CC and DD, which had high affinities for PDGFR-α and PDGFR-ß, individually rescued FSS-inhibited migration. FSS also inhibited MMP-2 gene expression, which was the most important factor for matrix turnover and migration of PDLs. PDGF-BB, CC, and DD increased the FSS-induced decline in MMP-2 expression. These results indicate that MMP-2 is regulated by FSS and contributes to the FSS-induced decrease in cell migration. CONCLUSIONS: Our study suggests a role for PDGFR-α and ß in short-term FSS-regulated cell proliferation and migration. These results will help provide the scientific foundation for revealing the mechanisms clinical tooth movement and PDL regeneration.

7.
Int J Nanomedicine ; 14: 7141-7153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564870

RESUMO

BACKGROUND: Theranostics, elaborately integrating both therapeutic and diagnostic functions into a nanoplatform holds great potential for precision cancer medicine. METHODS: Herein, a biodegradable theranostic nanoplatform with hyperthermia-induced bubble ability for highly efficient ultrasound (US) imaging-guided chemo-photothermal therapy of breast tumors was developed. The prepared nanoparticles consisted of polydopamine (PDA)-modified hollow mesoporous organosilica nanoparticles (HMONs) with approximately 75 nm in diameter for doxorubicin (DOX) loading and perfluoropentane (PFP) filling. In addition, the pH-sensitive PDA coating served as both gatekeeper controlling DOX release and photothermal agent for inducing hyperthermia. RESULTS: Such nanoplatform (PDA@HMONs-DOX/PFP, PHDP) provides efficient loading (328 mg/g) and controllable stimuli-responsive release of DOX for chemotherapy. The incorporated disulfide bonds in the framework of HMONs endowed nanoparticles with intrinsic glutathione-responsive biodegradability and improved biocompatibility. Benefiting from the hyperthermia upon an 808-nm laser irradiation of PDA, the liquid-gas phase transition of the loaded PFP was induced, resulting in the generation of the nanobubbles, followed by the coalescence into microbubbles. This conversation could enhance the tumor cell uptake of nanoparticles, as well as intensify the US imaging signals. In addition, a synergistic therapeutic effect of our fabricated nanoplatform on cells/tumor growth effect has been systematically evaluated both in vitro and in vivo. CONCLUSION: Therefore, such "all-in-one" PHDP nanoparticles with satisfactory biocompatibility and biodegradability, hyperthermia-induced bubble ability and simultaneous US imaging performance hold great potential for cancer nanotheranostics.


Assuntos
Hipertermia Induzida , Microbolhas , Nanopartículas/química , Fototerapia , Nanomedicina Teranóstica , Ultrassonografia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Feminino , Humanos , Indóis/química , Cinética , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Polímeros/química , Distribuição Tecidual/efeitos dos fármacos
8.
Acta Biomater ; 79: 168-181, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30121374

RESUMO

Innterconnected porous architecture is critical for tissue engineering scaffold as well as biomimetic nanofibrous structure. In addition, a paradigm shift is recently taking place in the scaffold design from homogeneous porous scaffold to heterogeneous porous scaffold for the complex tissues. In this study, a versatile and simple one-pot method, dual phase separation, is developed to fabricate macroporous nanofibrous scaffold by phase separating the mixture solutions of immiscible polymer blends without using porogens. The macropores in the scaffold are interconnected, and their size can be tuned by the polymer blend ratio. Moreover, benefiting from the easy operation of dual phase separation technique, an innovative, versatile and facile two-step phase separation method is developed to fabricate heterogeneous porous layered nanofibrous scaffolds with different shapes, such as bilayered tubular scaffold and tri-layered cylindrical scaffold. The bilayered tubular nanofibrous scaffold composed of poly(l-lactic acid) (PLLA)/poly(l-lactide-co-ε-caprolactone) (PLCL) microporous inner layer and PLLA/poly(ε-caprolactone) (PCL) macroporous outer layer matches simultaneously the functional growth of endothelial cells (ECs) and smooth muscle cells (SMCs), and shows the favorable performance for potential small diameter blood vessel application. Therefore, this study provides the novel and facile strategies to fabricate macroporous nanofibrous scaffold and heterogeneous porous layered nanofibrous scaffold for tissue engineering applications. STATEMENT OF SIGNIFICANCE: The fabrication of porous tissue engineering scaffold made of non-water-soluble polymer commonly requires the use of porogen materials. This is complex and time-consuming, resulting in greater difficulty to prepare heterogeneous porous layered scaffold for multifunctional tissues repair, such as blood vessel and osteochondral tissue. Herein, a novel, versatile and simple one-pot dual phase separation technique is developed for the first time to fabricate porous scaffold without using porogens. Simultaneously, it also endows the resultant scaffold with the biomimetic nanofibrous architecture. Based on the easy operation of this dual phase separation technique, a facile two-step phase separation method is also put forward for the first time and applied in fabricating heterogeneous porous layered nanofibrous scaffold for tissue engineering applications.


Assuntos
Prótese Vascular , Nanofibras/química , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Humanos , Masculino , Miócitos de Músculo Liso/citologia , Poliésteres/química , Porosidade , Coelhos , Ratos Sprague-Dawley , Estresse Mecânico , Tela Subcutânea/fisiologia , Alicerces Teciduais/química
9.
Theranostics ; 6(10): 1573-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446491

RESUMO

Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Antígeno CA-19-9/metabolismo , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Nus , Microbolhas , Análise de Sobrevida , Resultado do Tratamento , Células Tumorais Cultivadas , Ultrassonografia
10.
J Biomed Nanotechnol ; 10(3): 436-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24730239

RESUMO

The combination of ultrasound (US) and microbubbles (MB) is a promising physical method for improving the nanoparticles (NPs) delivery efficiency. However, few concerns over comparable delivery effect of the passive or active targeting property's NPs mediated by US and MB have limited their translation towards further application. For this, we prepared small interfering RNA (siRNA)-loaded mPEG-PLGA-PLL (siRNA/mPPP) NPs with passive targeting property and siRNA-loaded mPEG-PLGA-PLL-cRGD (siRNA/mPPPR) NPs with active targeting property, and evaluated the effect of US and MB for their delivery efficiency. The experimental results demonstrated that US and MB effectively enhance the siRNA delivery efficiency of the mPPP NPs compared with the mPPP NPs alone. In contrast, an improved delivery efficiency of siRNA was not observed in PC-3 cells treated with the mPPPR NPs mediated by US and MB, suggesting that the delivery efficiency of NPs mediated US and MB also depend on its targeting properties.


Assuntos
Técnicas de Transferência de Genes , Microbolhas , Nanopartículas/química , Fosfolipídeos/química , Poliésteres/química , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , Som , Hexafluoreto de Enxofre/química , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos , Humanos , Nanoconjugados/química , Nanoconjugados/efeitos da radiação , Nanopartículas/efeitos da radiação , Neoplasias/patologia , Fosfolipídeos/farmacocinética , Poliésteres/farmacocinética , Polietilenoglicóis/farmacocinética , RNA Interferente Pequeno/farmacocinética , Hexafluoreto de Enxofre/farmacocinética , Células Tumorais Cultivadas
11.
Int J Mol Med ; 31(1): 163-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23138749

RESUMO

A potentially viable approach for treating late-stage prostate cancer is gene therapy. Successful gene therapy requires safe and efficient delivery systems. In this study, we report the efficient delivery of small interfering RNA (siRNA) via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. On the basis of previous findings, cyclic Arg-Gly-Asp (cRGD) peptides were conjugated to NPs to recognize the target site, integrin αvß3, expressed in high levels in PC-3 prostate cancer cells. The suppression of angiogenesis by the downregulation of vascular endothelial growth factor (VEGF) expression has been widely used to inhibit the growth of malignant tumors. In our study, human VEGF (hVEGF)-siRNA was encapsulated in NPs to inhibit VEGF expression in PC-3 cells. Concurrently, sonoporation induced by ultrasound-targeted microbubble destruction (UTMD) was utilized for the delivery of siRNA-loaded NPs. Our results showed low cytotoxicity and high gene transfection efficiency, demonstrating that the targeted delivery of biodegradable NPs with UTMD may be potentially applied as new vector system for gene delivery.


Assuntos
Técnicas de Transferência de Genes , Microbolhas , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/genética , Ultrassom/métodos , Fator A de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Oligopeptídeos/metabolismo , Poliésteres/metabolismo , Polietilenoglicóis/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA