Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(23): e2300407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37704567

RESUMO

A polymer acceptor, named PX-1, is  designed and synthesized using a polymerization strategy with grafted small molecule acceptors. This design approach allows for the freedom of end groups while maintaining efficient terminal packing, enhancing π-π interactions, and facilitating charge transport. All-polymer organic solar cells based on PM6: PX-1 demonstrate a promising efficiency of 13.55%. The result presents an alternative pathway for the design of high-efficiency polymer acceptors through the careful regulation of small molecule acceptor monomers and linker units.


Assuntos
Bandagens , Polímeros , Polimerização
2.
Biomater Adv ; 154: 213631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757645

RESUMO

This study investigated the properties of the micro/nano composite structure on the surface of high oxygen concentration titanium (HOC-Ti) after anodic oxidation modification (HOC-NT) and evaluated its biocompatibility as a dental implant material in vitro and in vivo. HOC-Ti was produced by titanium powders and rutile powders using the powder metallurgy method. Its surface was modified by anodic oxidation. After detecting the electrochemical characteristics, the surface properties of HOC-NT were investigated. MC3T3 and MLO-Y4 cells were employed to evaluate the biocompatibility of HOC-NT and cocultured to study the effects of the changes in osteocytes induced by HOC-NT on osteoblasts. While, its possible mechanism was investigated. In addition, osseointegration around the HOC-NT implant was investigated through in vivo experiments. The results showed that a unique micronano composite structure on the HOC-Ti surface with excellent hydrophilicity and suitable surface roughness was created after anodic oxidation promoted by its electrochemical characteristics. The YAP protein may play an important role in regulating bone remodeling by ß-catenin and Rankl/OPG Signaling Pathways. An in vivo study also revealed an accelerated formation rate of new bone and more stable osseointegration around the HOC-NT implant. In view of all experimental results, it could be concluded that the unique morphology of HOC-NT has enhanced physicochemical and biological properties. The promotion of bone formation around implants indicated the feasibility of HOC-NT for applications in oral implants.


Assuntos
Nanocompostos , Osteogênese , Titânio/farmacologia , Osseointegração/fisiologia , Oxigênio/farmacologia
3.
Mater Sci Eng C Mater Biol Appl ; 117: 111306, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919667

RESUMO

In order to improve the strength of commercially pure Ti (CP-Ti) for oral implants, the high oxygen content Ti (HOC-Ti) was prepared via powder metallurgy. Its composition and mechanical properties were then characterized. After surface treatment by sandblasting and acid etching (SLA), the surface morphology, wettability and roughness of the HOC-Ti and CP-Ti sample were examined. In an in vitro test that followed an evaluation of the protein adsorption capacity of HOC-Ti, the mouse preosteoblast cells were inoculated onto the specimens to evaluate their biocompatibility, in comparison with those of CP-Ti. The oxygen concentration of the HOC-Ti increased to 0.62 wt%, which is higher than the 0.26 wt% of the CP-Ti, while their compositions and microstructures were very similar. The tensile and compressive yield strength of the HOC-Ti (800 MPa) was improved significantly in comparison to that of the CP-Ti (530 MPa). After surface treatment, a unique structure of micropores with a diameter of 380 nm was observed on the entire surface of the HOC-Ti that facilitates cell adhesion and proliferation. The wettability of the HOC-Ti was obviously superior (p < 0.05). The in vitro study showed that the MC3T3-E1 cells inoculated on the surface of HOC-Ti exhibited a homogeneous microstructure, and the viability was higher than that of the control group on days 4 and 7 (p < 0.05). In addition, the number and differentiation activity of cells that adhered to the surface of the HOC-Ti increased significantly on day 7 (p < 0.05). The experimental results showed that, in view of its mechanical properties and biocompatibility, HOC-Ti is superior to CP-Ti and is promising for oral implant applications.


Assuntos
Implantes Dentários , Titânio , Animais , Teste de Materiais , Camundongos , Oxigênio , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA