Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(7): 2929-2937, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32469526

RESUMO

High-performance dielectric nanomaterials have received increasing attention due to their important applications in the field of energy storage. Among various dielectric materials, polymer nanocomposite is one of the most promising candidates. However, the problems of environmental pollution caused by polymer-based dielectric materials have been extensively studied in recent years, which need to be solved urgently, leading to the search for new biodegradable dielectric materials. Herein, we report composite materials based on biodegradable and renewable chitin and molybdenum disulfide (MoS2) nanosheets for the first time. The MoS2 nanosheets were first fabricated by glycerol/urea system and then KOH/urea aqueous solution was used to directly dissolve chitin at low temperature together with the dispersion of the MoS2 nanosheets in a simple green process. The two-dimensional MoS2 nanosheets possess high polarization strength, and a large specific surface area can enhance the interfacial polarization with chitin; meanwhile, it can serve as a charge breakdown barrier to hinder the propagation of electrical tree branches. The results also show that the dielectric constant and breakdown strength of the chitin/MoS2 nanocomposites were increased, while the dielectric loss remained low. When the MoS2 content was 5 wt %, the charge and discharge efficiencies of the composite film were more than 80%, and the breakdown strength also reached 350 MV m-1, thus resulting in a high discharge energy density of 4.91 J cm-3, which was more than twice of the neat chitin (2.17 J cm-3). Furthermore, the nanocomposite films exhibited good thermal stability. Therefore, these chitin-based nanocomposite films are promising as high-performance biomass-based dielectric capacitors.


Assuntos
Molibdênio , Nanocompostos , Quitina , Eletricidade , Polímeros
2.
Angew Chem Int Ed Engl ; 53(21): 5380-4, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24711342

RESUMO

Nanostructured conductive polymers can offer analogous environments for extracellular matrix and induce cellular responses by electric stimulation, however, such materials often lack mechanical strength and tend to collapse under small stresses. We prepared electrically conductive nanoporous materials by coating nanoporous cellulose gels (NCG) with polypyrrole (PPy) nanoparticles, which were synthesized in situ from pyrrole monomers supplied as vapor. The resulting NCG/PPy composite hydrogels were converted to aerogels by drying with supercritical CO2, giving a density of 0.41-0.53 g cm(-3), nitrogen adsorption surface areas of 264-303 m(2) g(-1), and high mechanical strength. The NCG/PPy composite hydrogels exhibited an electrical conductivity of up to 0.08 S cm(-1). In vitro studies showed that the incorporation of PPy into an NCG enhances the adhesion and proliferation of PC12 cells. Electrical stimulation demonstrated that PC12 cells attached and extended longer neurites when cultured on NCG/PPy composite gels with DBSA dopant. These materials are promising candidates for applications in nerve regeneration, carbon capture, catalyst supports, and many others.


Assuntos
Celulose/química , Hidrogéis/química , Polímeros/química , Pirróis/química , Animais , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Hidrogéis/toxicidade , Nanopartículas/química , Nanoporos , Regeneração Nervosa , Neuritos/fisiologia , Células PC12 , Ratos
3.
Int J Biol Macromol ; 243: 125220, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285894

RESUMO

The design and preparation of novel renewable biomass-based dielectric composites have drawn great attention recently. Here, cellulose was dissolved in NaOH/urea aqueous solution, and Al2O3 nanosheets (AONS) synthesized by hydrothermal method were used as fillers. Then the regenerated cellulose (RC)-AONS dielectric composite films were prepared by regeneration, washing and drying. The two-dimensional AONS had a better effect on improving the dielectric constant and breakdown strength of the composites, so that the RC-AONS composite film with 5 wt% AONS content reached an energy density of 6.2 J/cm3 at 420 MV/m. Furthermore, in order to improve the dielectric energy storage properties of cellulose films in high humidity environment, the hydrophobic polyvinylidene fluoride (PVDF) was innovatively introduced to construct RC-AONS-PVDF composite films. The energy storage density of the prepared ternary composite films could reach 8.32 J/cm3 at 400 MV/m, which was 416 % improvement against that of the commercially biaxially oriented polypropylene (2 J/cm3), and could be cycled for >10,000 times under 200 MV/m. Concurrently, the water absorption of the composite film in humidity was effectively reduced. This work broadens the application prospect of biomass-based materials in the field of film dielectric capacitor.


Assuntos
Celulose , Polivinil , Biomassa , Dessecação
4.
Carbohydr Polym ; 288: 119407, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450658

RESUMO

The piezoelectric effect is one of the most promising electromechanical coupling processes for mechanical energy conversion and energy harvesting. However, natural polymer based piezoelectric materials are of poor piezoelectric performance. we developed flexible porous piezoelectric aerogel films based on TEMPO-oxidized cellulose nanofibrils (TOCN) and MoS2 nanosheets. Those aerogel films possessed large specific surface areas and abundant mesopores. Moreover, they exhibited very good piezoelectric properties when a field strength of 20 MV/m was used to polarize MoS2 nanosheets and air in the mesopores. When assembled to piezoelectric nanogenerators (PENGs), a TOCN/MoS2 aerogel film PENG containing 6 wt% of MoS2 exhibited the best output performance. It generated an open circuit voltage of 42 V and a short-circuit current of 1.1 µA, a maximum area power density of 1.29 µW/cm2 and a maximum volume power density of 0.143 µW/cm3. These features enable them to be promising piezoelectric materials for energy harvesting.


Assuntos
Celulose Oxidada , Celulose , Dissulfetos/química , Molibdênio/química , Porosidade
5.
Carbohydr Polym ; 298: 120111, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241285

RESUMO

The development of high-performance cellulose-based triboelectric nanogenerators (TENG) has been a subject widely concerned by researchers. Here, we prepared a composite aerogel film based on TEMPO-oxidized cellulose nanofiber (TOCN) and copper calcium titanate (CaCu3Ti4O12, CCTO) nanoparticles. Under their comprehensive effects of the enhanced dielectric performance, the TOCN/CCTO-20 composite film with 20 % CCTO content based TENG device showed the best output performance of an open circuit voltage of 152 V, a short circuit current of 33.8 µA and a power density of 483 mW/m2, which were 3.37, 4.07 and 3.71 times higher than that of the pure TOCN based TENG device, respectively. In addition, effects of external force conditions, aerogel film size parameters and the agglomeration state of high filler content on the output performance were also studied. These results indicated that the TOCN/CCTO composite aerogel films can be used as efficient and low-cost cellulose-based triboelectric positive materials for energy harvesting.


Assuntos
Celulose Oxidada , Nanofibras , Cálcio , Celulose , Cobre , Titânio
6.
J Agric Food Chem ; 63(27): 6113-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26101792

RESUMO

Wood pulps with certain amounts of lignin were successfully dissolved in aqueous NaOH/urea solution by subjecting them to the dilute acid pretreatment. After the acid hydrolysis, viscosity-average degree of polymerization (DPv) of the pulps decreased. The results revealed that both the DPv and lignin contents influenced the dissolved proportions of wood pulps. When they were not so high, the wood pulps could almost completely dissolve with dissolved proportions >90%. In particular, the acid-pretreated unbleached kraft pulp with DPv of about 500 and lignin content of 6.9% could dissolve in NaOH/urea solvent and achieve a maximum pulp concentration of 4 wt % in the obtained lignocellulose solution. Moreover, the acid-pretreated bleached thermomechanical pulp with a high lignin content of 14.2% also almost completely dissolved. The lignocellulose films prepared from these wood pulp/NaOH/urea solutions exhibited good transparency and bendability, thus maybe promising as new biobased materials.


Assuntos
Lignina/química , Madeira/química , Ácidos/química , Biotecnologia , Hidrólise , Hidróxido de Sódio/química , Solubilidade , Ureia/química , Viscosidade
7.
ACS Appl Mater Interfaces ; 7(41): 22990-8, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26397710

RESUMO

With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability. Polymerization of the monomer gave P(MMA/BMA)/NCG, P(MMA/BA)/NCG nanocomposites with a volume fraction of NCG ranging from 15% to 78%. SEM, TEM, and XRD analyses show that the NCG are finely distributed and preserved well in the nanocomposites after polymerization. DMA analysis demonstrates a significant improvement in tensile storage modulus E' above the glass transition temperature; for instance, at 95 °C, E' is increased by over 4 orders of magnitude from 0.03 MPa of the P(MMA/BMA) up to 350 MPa of nanocomposites containing 15% v/v NCG. This reinforcement effect can be explained by the percolation model. The nanocomposites also show remarkable improvement in solvent resistance (swelling ratio of 1.3-2.2 in chloroform, acetone, and toluene), thermal stability (do not melt or decompose up to 300 °C), and low coefficients of thermal expansion (in-plane CTE of 15 ppm·K(-1)). These nanocomposites will have great promising applications in flexible display, packing, biomedical implants, and many others.


Assuntos
Celulose/química , Géis/química , Nanocompostos/química , Nanoporos , Polímeros/química , Hidrogéis/química , Microscopia de Força Atômica , Solventes , Estresse Mecânico , Temperatura , Termogravimetria , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA