Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510965

RESUMO

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Inosina Pranobex , Vacinas Virais , Animais , Camundongos , Suínos , Adjuvantes de Vacinas , Anticorpos Antivirais , Adjuvantes Imunológicos , Interleucinas , Imunidade
2.
Front Immunol ; 15: 1330677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433834

RESUMO

Introduction: Conventional foot-and-mouth disease (FMD) vaccines have been developed to enhance their effectiveness; however, several drawbacks remain, such as slow induction of antibody titers, short-lived immune response, and local side effects at the vaccination site. Therefore, we created a novel FMD vaccine that simultaneously induces cellular and humoral immune responses using the Dectin-2 agonist, D-galacto-D-mannan, as an adjuvant. Methods: We evaluated the innate and adaptive (cellular and humoral) immune responses elicited by the novel FMD vaccine and elucidated the signaling pathway involved both in vitro and in vivo using mice and pigs, as well as immune cells derived from these animals. Results: D-galacto-D-mannan elicited early, mid-, and long-term immunity via simultaneous induction of cellular and humoral immune responses by promoting the expression of immunoregulatory molecules. D-galacto-D-mannan also enhanced the immune response and coordinated vaccine-mediated immune response by suppressing genes associated with excessive inflammatory responses, such as nuclear factor kappa B, via Sirtuin 1 expression. Conclusion: Our findings elucidated the immunological mechanisms induced by D-galacto-D-mannan, suggesting a background for the robust cellular and humoral immune responses induced by FMD vaccines containing D-galacto-D-mannan. Our study will help to facilitate the improvement of conventional FMD vaccines and the design of next-generation FMD vaccines.


Assuntos
Adjuvantes de Vacinas , Lectinas Tipo C , Vacinas Virais , Animais , Camundongos , Suínos , Imunidade Humoral , Mananas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
3.
Vaccines (Basel) ; 11(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38006022

RESUMO

An inactivated whole-virus vaccine is currently used to prevent foot-and-mouth disease (FMD). Although this vaccine is effective, it offers short-term immunity that requires regular booster immunizations and has several side effects, including local reactions at the vaccination site. To address these limitations, herein, we evaluated the efficacy of bestatin as a novel small molecule adjuvant for inactivated FMD vaccines. Our findings showed that the FMD vaccine formulated with bestatin enhanced early, intermediate-, and particularly long-term immunity in experimental animals (mice) and target animals (pigs). Furthermore, cytokines (interferon (IFN)α, IFNß, IFNγ, and interleukin (IL)-29), retinoic acid-inducible gene (RIG)-I, and T-cell and B-cell core receptors (cluster of differentiation (CD)28, CD19, CD21, and CD81) markedly increased in the group that received the FMD vaccine adjuvanted with bestatin in pigs compared with the control. These results indicate the significant potential of bestatin to improve the efficacy of inactivated FMD vaccines in terms of immunomodulatory function for the simultaneous induction of potent cellular and humoral immune response and a long-lasting memory response.

4.
Front Microbiol ; 14: 1289065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029108

RESUMO

Background: Foot-and-mouth disease (FMD) is an extremely contagious viral disease that is fatal to young animals and is a major threat to the agricultural economy by reducing production and limiting the movement of livestock. The currently commercially-available FMD vaccine is prepared using an inactivated viral antigen in an oil emulsion, with aluminum hydroxide [Al(OH)3] as an adjuvant. However, oil emulsion-based options possess limitations including slow increases in antibody titers (up to levels adequate for defense against viral infection) and risks of local reactions at the vaccination site. Further, Al(OH)3 only induces a T helper 2 (Th2) cell response. Therefore, novel adjuvants that can address these limitations are urgently needed. Glycyrrhizic acid (extracted from licorice roots) is a triterpenoid saponin and has great advantages in terms of price and availability. Methods: To address the limitations of the currently used commercial FMD vaccine, we added glycyrrhizic acid as an adjuvant (immunostimulant) to the FMD bivalent (O PA2 + A YC) vaccine. We then evaluated its efficacy in promoting both innate and adaptive (cellular and humoral) immune reactions in vitro [using murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs)] and in vivo (using mice and pigs). Results: Glycyrrhizic acid has been revealed to induce an innate immune response and enhance early, mid-, and long-term immunity. The studied bivalent vaccine with glycyrrhizic acid increased the expression of immunoregulatory genes such as pattern-recognition receptors (PRRs), cytokines, transcription factors, and co-stimulatory molecules. Conclusion: Collectively, glycyrrhizic acid could have utility as a novel vaccine adjuvant that can address the limitations of commercialized FMD vaccines by inducing potent innate and adaptive immune responses.

5.
Sci Rep ; 12(1): 2456, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165342

RESUMO

Determining the exact positional relationship between mandibular third molar (M3) and inferior alveolar nerve (IAN) is important for surgical extractions. Panoramic radiography is the most common dental imaging test. The purposes of this study were to develop an artificial intelligence (AI) model to determine two positional relationships (true contact and bucco-lingual position) between M3 and IAN when they were overlapped in panoramic radiographs and compare its performance with that of oral and maxillofacial surgery (OMFS) specialists. A total of 571 panoramic images of M3 from 394 patients was used for this study. Among the images, 202 were classified as true contact, 246 as intimate, 61 as IAN buccal position, and 62 as IAN lingual position. A deep convolutional neural network model with ResNet-50 architecture was trained for each task. We randomly split the dataset into 75% for training and validation and 25% for testing. Model performance was superior in bucco-lingual position determination (accuracy 0.76, precision 0.83, recall 0.67, and F1 score 0.73) to true contact position determination (accuracy 0.63, precision 0.62, recall 0.63, and F1 score 0.61). AI exhibited much higher accuracy in both position determinations compared to OMFS specialists. In determining true contact position, OMFS specialists demonstrated an accuracy of 52.68% to 69.64%, while the AI showed an accuracy of 72.32%. In determining bucco-lingual position, OMFS specialists showed an accuracy of 32.26% to 48.39%, and the AI showed an accuracy of 80.65%. Moreover, Cohen's kappa exhibited a substantial level of agreement for the AI (0.61) and poor agreements for OMFS specialists in bucco-lingual position determination. Determining the position relationship between M3 and IAN is possible using AI, especially in bucco-lingual positioning. The model could be used to support clinicians in the decision-making process for M3 treatment.


Assuntos
Tomada de Decisão Clínica/métodos , Aprendizado Profundo , Mandíbula/diagnóstico por imagem , Traumatismos do Nervo Mandibular/prevenção & controle , Nervo Mandibular/diagnóstico por imagem , Dente Serotino/diagnóstico por imagem , Radiografia Panorâmica/métodos , Adulto , Idoso , Tomografia Computadorizada de Feixe Cônico/métodos , Confiabilidade dos Dados , Feminino , Humanos , Masculino , Traumatismos do Nervo Mandibular/etiologia , Pessoa de Meia-Idade , Extração Dentária/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA