Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 354: 127166, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447330

RESUMO

Waste activated sludge contaminated with high levels of 4-nonylphenol (4-NP) is a major environmental concern. We have synthesized lignin-based biochar (LGBC) for use as a carbocatalyst in calcium peroxide (CP)-mediated sewage sludge pretreatment. Treatment of sewage sludge with 3.1 × 10-4 M of CP and 3.0 g L-1 of LGBC removed 76% of 4-NP in 12 h, which were 3.8 and 2.4 times higher than that with the LGBC and CP alone, respectively. There was synergy between reactive oxygen species (HO•, O2•-, and 1O2) and graphitic frameworks of LGBC. Pretreatment using the LGBC/CP system enhanced the release of biodegradable organic xenobiotics from the sludge. LGBC/CP enriched Proteobacteria and Thermostilla bacterial consortium (Planctomycetes) in the sludge and promoted 4-NP biodegradation. This work provides new insights into the chemical and biological mechanisms by which LGBC promotes 4-NP biodegradation in waste activated sludge via hydroxyl radical-driven carbon advanced oxidation pretreatment.


Assuntos
Lignina , Esgotos , Anaerobiose , Bactérias , Carvão Vegetal , Peróxidos , Fenóis , Esgotos/microbiologia , Eliminação de Resíduos Líquidos
2.
Bioresour Technol ; 353: 127131, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35398535

RESUMO

Catalytic fast pyrolysis of low sulfonated Kraft lignin was performed under different atmospheric environments such as N2, CH4, and the gas derived from CH4 decomposition (CH4-D). The use of Zn- or Mo-loaded HZSM-5 as catalyst led to a higher pyrolytic oil yield compared to parent HZSM-5 in CH4 and CH4-D atmospheres. The yields of benzene, toluene, and xylenes were increased by the synergistic effects from metal loading, higher H/Ceff ratio, higher acidity, and CH4 activation. The enhanced CH4 activation via metal loading resulted in higher methylation of alkyl moieties and 33% increase in the total yield of benzene, toluene, and xylenes in comparison to parent HZSM-5. A higher H/Ceff ratio of 6 via CH4 decomposition led to the formation of a hydro-pyrolysis environment. Moreover, the CH4-D environment showed H2/CH4 ratio of 0.36 in the product gas which warranted the presence of more H2 under the CH4-D pyrolysis environment.


Assuntos
Metano , Pirólise , Benzeno , Catálise , Meios de Cultura , Temperatura Alta , Lignina , Metais , Tolueno , Xilenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA