Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 17(1): 74, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764418

RESUMO

BACKGROUND: Despite its ability to grow and produce high-value molecules using renewable carbon sources, two main factors must be improved to use Burkholderia sacchari as a chassis for bioproduction at an industrial scale: first, the lack of molecular tools to engineer this organism and second, the inherently slow growth rate and poly-3-hydroxybutyrate [P(3HB)] production using xylose. In this work, we have addressed both factors. RESULTS: First, we adapted a set of BglBrick plasmids and showed tunable expression in B. sacchari. Finally, we assessed growth rate and P(3HB) production through overexpression of xylose transporters, catabolic or regulatory genes. Overexpression of xylR significantly improved growth rate (55.5% improvement), polymer yield (77.27% improvement), and resulted in 71% of cell dry weight as P(3HB). CONCLUSIONS: These values are unprecedented for P(3HB) accumulation using xylose as a sole carbon source and highlight the importance of precise expression control for improving utilization of hemicellulosic sugars in B. sacchari.


Assuntos
Bioengenharia/métodos , Burkholderia/química , Hidroxibutiratos/química , Poliésteres/química , Xilose/metabolismo
2.
Braz J Microbiol ; 52(2): 547-559, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33491139

RESUMO

Saline environments are extreme habitats with a high diversity of microorganisms source of a myriad of biomolecules. These microorganisms are assigned as extremophiles recognized to be producers of new natural compounds, which can be synthesized by helping to survive under harshness and extreme conditions. In Brazil, in the saline and semi-arid region of Areia Branca (Caatinga biome), halotolerant bacteria (able to growth at high NaCl concentrations) were isolated from rhizosphere of native plants Blutaparon portulacoides and Spergularia sp. and their biopolymer production was studied. A total of 25 bacterial isolates were identified at genus level based on 16S rRNA gene sequence analysis. Isolates were mainly Gram-positive bacteria from Bacillaceae, Staphylococcaceae, Microbacteriaceae, and Bacillales XII incertae sedis families, affiliates to Bacillus, Staphylococcus, Curtobacterium, and Exiguobacterium genera, respectively. One of the Gram-negative isolates was identified as member of the Pseudomonadaceae family, genus Pseudomonas. All the identified strains were halotolerant bacteria with optimum growth at 0.6-2.0 M salt concentrations. Assays for biopolymer production showed that the halotolerant strains are a rich source of compounds as polyhydroxyalkanoates (PHA), biodegradable biopolymer, such as poly(3-hydroxybutyrate) (PHB) produced from low-cost substrates, and exopolysaccharides (EPS), such as hyaluronic acid (HA), metabolite of great interest to the cosmetic and pharmaceutical industry. Also, eight bacterial EPS extracts showed immunostimulatory activity, promising results that can be used in biomedical applications. Overall, our findings demonstrate that these biomolecules can be produced in culture medium with 0.6-2.0 M NaCl concentrations, relevant feature to avoid costly production processes. This is the first report of biopolymer-producing bacteria from a saline region of Caatinga biome that showed important biological activities.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Biopolímeros/metabolismo , Cloreto de Sódio/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Brasil , Filogenia , Poli-Hidroxialcanoatos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Cloreto de Sódio/análise , Solo/química
3.
Int J Biol Macromol ; 114: 512-519, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548920

RESUMO

Pseudomonas sp. PHA- was used as host for PHA biosynthesis genes from Aeromonas sp. to produce 3HB-co-3HAMCL from glucose with no supply of co-substrates. A non-naturally-occurring PHA composed mainly of 3HB, 3HHx and 3HD (3HO, 3HDdΔ5 and 3HDd monomers were detected in smaller amounts) was obtained. The polymer was extracted using two different solvents (acetone and chloroform) and subject to the following characterization tests: FTIR, DSC, TGA and GPC. The latter suggests a block copolymer since a single and narrow elution peak was observed for each sample. The DSC results ruled out the possibility of a random copolymer and agrees with a single copolymer composed of two blocks: one with the typical composition of PHAMCL produced by Pseudomonas and another containing 3HB and 3HHx with a high 3HHx molar fraction. Thus, this study increases the perspectives of P(3HB-co-3HAMCL) production from carbohydrates as the sole carbon source.


Assuntos
Glucose/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Poliésteres/metabolismo , Pseudomonas/metabolismo , Aeromonas/genética , Carbono/metabolismo , Microrganismos Geneticamente Modificados/genética , Pseudomonas/genética
4.
Int J Biol Macromol ; 98: 654-663, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28167112

RESUMO

Biopolymers as polyhydroxyalkanoates (PHA) composed by different co-monomers 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] has attracted interest since its properties are similar to low density polyethylene. Burkholderia sacchari produces this copolymer with a very low 3HHx molar fraction, about 2 mol%. B. sacchari mutant (unable to produce polymer) was engineered to host PHA biosynthesis genes (phaPCJ) from Aeromonas sp. In addition, a two-step bioprocess to increase biopolymer production was developed. The combination of these techniques resulted in the production of P(3HB-co-3HHx) with 3HHx content up to 20 mol%. The PHA content was about 78% of dry biomass, resulting in PHA volumetric productivities around 0.45gl-1h-1. The P(3HB-co-3HHx) containing 20 mol% of 3HHx presented an elongation at brake of 945%, higher than reported before for this PHA composition. Here we have described an approach to increase 3HHx content into the copolymer, allowing the precise control of the 3HHx molar fractions.


Assuntos
Ácido 3-Hidroxibutírico/biossíntese , Biopolímeros/biossíntese , Burkholderia/química , Ácido 3-Hidroxibutírico/química , Aeromonas/química , Biopolímeros/química , Caproatos/química , Fermentação , Poli-Hidroxialcanoatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA