Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Br J Clin Pharmacol ; 90(8): 2004-2018, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38775025

RESUMO

AIMS: We report on investigations exploring the P2X3-receptor antagonist filapixant's effect on taste perception and cough-reflex sensitivity and describe its pharmacokinetics, including its CYP3A4-interaction potential. METHODS: In a randomized, placebo-controlled, double-blind study, 3 × 12 healthy men (18-45 years) were assigned (3:1) to filapixant (20, 80 or 250 mg by mouth) or placebo twice daily over 2 weeks. A single dose of midazolam (1 mg), a CYP3A4 substrate, was administered with and without filapixant. Assessments included a taste-strips test, a taste questionnaire, cough challenge with adenosine triphosphate, adverse event reports and standard safety assessments. RESULTS: Taste disturbances were observed mainly in the 250-mg group: six of nine participants (67%) in this group reported hypo- or dysgeusia in the questionnaire; eight participants (89%) reported taste-related adverse events. Five participants (56%) had a decrease in overall taste-strips-test scores ≥2 points (point estimate -1.1 points, 90% confidence interval [-3.3; 1.1]). Cough counts increased with adenosine triphosphate concentration but without major differences between treatments. Filapixant exposure increased proportionally to dose. Co-administration of filapixant had no clinically relevant effect on midazolam pharmacokinetics. Area under the concentration-time curve ratios and 90% confidence intervals were within 80-125%. No serious or severe adverse events were reported. CONCLUSIONS: Overall, filapixant was safe and well tolerated, apart from mild, transient taste disturbances. Such disturbances occurred more frequently than expected based on (in vitro) receptor-selectivity data, suggesting that other factors than P2X3:P2X2/3 selectivity might also play an important role in this context. The cough-challenge test showed no clear treatment effect. Filapixant has no clinically relevant CYP3A4 interaction potential.


Assuntos
Citocromo P-450 CYP3A , Relação Dose-Resposta a Droga , Interações Medicamentosas , Midazolam , Antagonistas do Receptor Purinérgico P2X , Humanos , Masculino , Adulto , Citocromo P-450 CYP3A/metabolismo , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Antagonistas do Receptor Purinérgico P2X/efeitos adversos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Método Duplo-Cego , Adulto Jovem , Midazolam/farmacocinética , Midazolam/administração & dosagem , Midazolam/efeitos adversos , Adolescente , Voluntários Saudáveis , Pessoa de Meia-Idade , Tosse/induzido quimicamente , Paladar/efeitos dos fármacos , Receptores Purinérgicos P2X3/efeitos dos fármacos , Receptores Purinérgicos P2X3/metabolismo
2.
Int J Orthod Milwaukee ; 20(2): 29-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19739499

RESUMO

The aim of this study is to determine how the Biobloc appliance affects the growth of soft tissue facial components. 14 landmarks in pre-, post- and no-treatment standardized lateral photographs were digitized in 41 cases (30 cases in the pre- and post-treatment group, and 11 cases in the control group). Using finite-element analysis, it was found that soft tissue facial changes in patients treated with Biobloc appliances showed a consistent growth guidance direction of approximately 45 degrees. For the untreated group, the facial growth direction was less consistent and more vertical. It is concluded that soft tissue facial changes associated with Biobloc treatment are consistent with a more balanced facial profile.


Assuntos
Face/anatomia & histologia , Má Oclusão Classe II de Angle/terapia , Desenvolvimento Maxilofacial , Aparelhos Ortodônticos Funcionais , Cefalometria , Criança , Análise do Estresse Dentário/métodos , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Fotografia Dentária
3.
Lancet Respir Med ; 7(5): 402-416, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30876830

RESUMO

BACKGROUND: Small airways dysfunction (SAD) is well recognised in asthma, yet its role in the severity and control of asthma is unclear. This study aimed to assess which combination of biomarkers, physiological tests, and imaging markers best measure the presence and extent of SAD in patients with asthma. METHODS: In this baseline assessment of a multinational prospective cohort study (the Assessment of Small Airways Involvement in Asthma [ATLANTIS] study), we recruited participants with and without asthma (defined as Global Initiative for Asthma severity stages 1-5) from general practices, the databases of chest physicians, and advertisements at 29 centres across nine countries (Brazil, China, Germany, Italy, Spain, the Netherlands, the UK, the USA, and Canada). All participants were aged 18-65 years, and participants with asthma had received a clinical diagnosis of asthma more than 6 months ago that had been confirmed by a chest physician. This diagnosis required support by objective evidence at baseline or during the past 5 years, which could be: positive airway hyperresponsiveness to methacholine, positive reversibility (a change in FEV1 ≥12% and ≥200 mL within 30 min) after treatment with 400 µg of salbutamol in a metered-dose inhaler with or without a spacer, variability in peak expiratory flow of more than 20% (measured over 7 days), or documented reversibility after a cycle (eg, 4 weeks) of maintenance anti-asthma treatment. The inclusion criteria also required that patients had stable asthma on any previous regular asthma treatment (including so-called rescue ß2-agonists alone) at a stable dose for more than 8 weeks before baseline and had smoked for a maximum of 10 pack-years in their lifetime. Control group participants were recruited by advertisements; these participants were aged 18-65 years, had no respiratory symptoms compatible with asthma or chronic obstructive pulmonary disease, normal spirometry, and normal airways responsiveness, and had smoked for a maximum of 10 pack-years. We assessed all participants with spirometry, body plethysmography, impulse oscillometry, multiple breath nitrogen washout, CT (in selected participants), and questionnaires about asthma control, asthma-related quality of life (both in participants with asthma only), and health status. We applied structural equation modelling in participants with asthma to assess the contribution of all physiological and CT variables to SAD, from which we defined clinical SAD and CT SAD scores. We then classified patients with asthma into SAD groups with model-based clustering, and we compared asthma severity, control, and health-care use during the past year by SAD score and by SAD group. This trial is registered with ClinicalTrials.gov, number NCT02123667. FINDINGS: Between June 30, 2014, and March 3, 2017, we recruited and evaluated 773 participants with asthma and 99 control participants. All physiological measures contributed to the clinical SAD model with the structural equation modelling analysis. The prevalence of SAD in asthma was dependent on the measure used; we found the lowest prevalence of SAD associated with acinar airway ventilation heterogeneity (Sacin), an outcome determined by multiple breath nitrogen washout that reflects ventilation heterogeneity in the most peripheral, pre-acinar or acinar airways. Impulse oscillometry and spirometry results, which were used to assess dysfunction of small-sized to mid-sized airways, contributed most to the clinical SAD score and differed between the two SAD groups. Participants in clinical SAD group 1 (n=452) had milder SAD than group 2 and comparable multiple breath nitrogen washout Sacin to control participants. Participants in clinical SAD group 2 (n=312) had abnormal physiological SAD results relative to group 1, particularly their impulse oscillometry and spirometry measurements, and group 2 participants also had more severe asthma (with regard to asthma control, treatments, exacerbations, and quality of life) than group 1. Clinical SAD scores were higher (indicating more severe SAD) in group 2 than group 1, and we found that these scores were related to asthma control, severity, and exacerbations. We found no correlation between clinical SAD and CT SAD scores. INTERPRETATION: SAD is a complex and silent signature of asthma that is likely to be directly or indirectly captured by combinations of physiological tests, such as spirometry, body plethysmography, impulse oscillometry, and multiple breath nitrogen washout. SAD is present across patients with all severities of asthma, but it is particularly prevalent in severe disease. The clinical classification of SAD into two groups (a milder and a more severe group) by use of impulse oscillometry and spirometry, which are easy to use, is meaningful given its association with GINA severity stages, asthma control, quality of life, and exacerbations. FUNDING: Chiesi Farmaceutici SpA.


Assuntos
Asma/fisiopatologia , Pulmão/fisiopatologia , Adulto , Asma/diagnóstico , Estudos de Coortes , Feminino , Humanos , Internacionalidade , Masculino , Má Oclusão , Pessoa de Meia-Idade , Pletismografia , Estudos Prospectivos , Testes de Função Respiratória/estatística & dados numéricos , Índice de Gravidade de Doença , Espirometria/estatística & dados numéricos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA