Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biodegradation ; 33(6): 529-556, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36227389

RESUMO

Microplastics (MPs) have sparked widespread concern due to their non-degradable and persistent nature in ecosystems. Long-term exposure to microplastics can cause chronic toxicity, including impaired reproduction and malnutrition, threatening biota and humans. Microplastics can also cause ingestion, choking, and entanglement in aquatic populations. Thus, it is crucial to establish remarkably effective approaches to diminish MPs from the environment. In this regard, using fungi for microplastic degradation is beneficial owing to its diverse nature and effective enzymatic system. Extracellular and intracellular enzymes in fungi degrade the plastic polymers into monomers and produce carbon dioxide and water under aerobic conditions whereas methane under anaerobic conditions. Further, fungi also secrete hydrophobins (surface proteins) which serve as a crucial aid in the bioremediation process by promoting substrate mobility and bioavailability. Therefore, the present review provides insight into the mechanism and general pathway of fungal-mediated microplastic degradation. Additionally, analytical techniques for the monitoring of MPs degradation along with the roadblocks and future perspectives have also been discussed. However, more research is required to fully perceive the underlying process of microplastic biodegradation in the environment using fungus, to establish an effective and sustainable practice for its management.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Dióxido de Carbono , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Água , Metano
2.
Plant Physiol Biochem ; 213: 108795, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878390

RESUMO

Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.


Assuntos
Microplásticos , Plantas , Microplásticos/toxicidade , Plantas/metabolismo , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Nanopartículas/toxicidade , Recuperação e Remediação Ambiental/métodos , Plásticos/metabolismo , Plásticos/toxicidade , Poluição Ambiental
3.
Environ Sci Pollut Res Int ; 27(9): 9167-9180, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31916147

RESUMO

A new approach for easy synthesis of Bacillus pseudomycoides immobilized polyvinyl alcohol (PVA)/glutaraldehyde (GA) hydrogel for application in a wastewater treatment system is reported. Optimization studies revealed that GA/PVA mass ratio of 0.03 and acidic pH of 2 were required for hydrogel synthesis and eventually for bacterial cell immobilization. The synthesized crosslinked matrix possessed a pore size suitable for microbial cell entrapment while maintaining cell accessibility to external environment for bioremediation. Possible crosslinking and bacterial cell immobilization in the hydrogel were evidenced by FTIR, XRD, and SEM studies, respectively. Further, the extent of crosslinking of GA with PVA was investigated and confirmed by transmittance and permeability experiments. The viability and proliferation of hydrogel embedded cells (after 25 days) was confirmed by confocal fluorescence microscopy which also indicated that acidic pH of polymer solution did not affect the immobilized live cells. B. pseudomycoides immobilized hydrogel were demonstrated to be effective for treatment of municipal wastewater and reduced biochemical oxygen demand (BOD), chemical oxygen demand (COD), and protein content below the recommended levels. Overall, the results from this bench-scale work show that employing bacteria-embedded PVA/GA hydrogel for the treatment of municipal wastewater yield promising results which should be further explored in pilot/field-scale studies.


Assuntos
Bacillus/química , Hidrogéis/química , Álcool de Polivinil , Glutaral , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA