Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22289, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097607

RESUMO

Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Biopolímeros , Resíduos Industriais , Proteínas do Soro do Leite
2.
Bioresour Technol ; 368: 128332, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36414137

RESUMO

Hydrogen has gained attention as an alternative source of energy because of its non-polluting nature as on combustion it produces only water. Biological methods are eco-friendly and have benefits in waste management and hydrogen production simultaneously. The use of algal biomass as feedstock in dark fermentation is advantageous because of its low lignin content, high growth rate, and carbon-fixation ability. The major bottlenecks in biohydrogen production are its low productivity and high production costs. To overcome these issues, many advances in the area of biomass pretreatment to increase sugar release, understanding of algal biomass composition, and development of fermentation strategies for the complete recovery of nutrients are ongoing. Recently, mixed substrate fermentation, multistep fermentation, and the use of nanocatalysts to improve hydrogen production have increased. This review article evaluates the current progress in algal biomass pretreatment, key factors, and possible solutions for increasing hydrogen production.


Assuntos
Hidrogênio , Lignina , Biomassa , Fermentação , Nutrientes
3.
Environ Pollut ; 320: 121106, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681374

RESUMO

Since the advent of microplastics, it has become a vital component, directly or indirectly, in our daily lives. With advancements in their use, microplastics have become an integral part of personal care, cosmetics, and cleaning products (PCCPs) and emerged as a domestic source of environmental pollution. Over the years, researchers have ascertained the harmful effects of microplastics on the environment. In this context, the assessment and monitoring of microplastics in PCCPs require considerable attention. In addition, it raises concern regarding the need to develop innovative, sustainable, and environmentally safe technologies to combat microplastic pollution. Therefore, this review is an endeavor to uncover the fate, route and degradation mechanism of cosmetic microplastics. In addition, the major technological advancement in cosmetic microplastic removal and the steps directed toward mitigating cosmetic microplastic pollution are also discussed.


Assuntos
Cosméticos , Poluentes Químicos da Água , Microplásticos , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluição Ambiental , Ecossistema , Cosméticos/análise
4.
Bioresour Technol ; 367: 128281, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370945

RESUMO

As the global demand for sustainable energy increases, lignocellulosic (such as agricultural residues, forest biomass, municipal waste, and dedicated energy crops) and algal (including macroalgae and microalgae) biomass have attracted considerable attention, because of their high availability of carbohydrates. This is a potential feedstock to produce biochemical and bioenergy. Pretreatment of biomass can disrupt their complex structure, increasing conversion efficiency and product yield. Therefore, this review comprehensively discusses recent advances in different pretreatments (physical, chemical, physicochemical, and biological pretreatments) for lignocellulosic and algal biomass and their biorefining methods. Life cycle assessment (LCA) which enables the quantification of the environmental impact assessment of a biorefinery also be introduced. Biorefinery processes such as raw material acquisition, extraction, production, waste accumulation, and waste conversion are all monitored under this concept. Nevertheless, there still exist some techno-economic barriers during biorefinery and extensive research is still needed to develop cost-effective processes.


Assuntos
Biocombustíveis , Lignina , Biomassa , Lignina/metabolismo , Produtos Agrícolas/metabolismo
5.
Bioengineered ; 13(2): 2226-2247, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35030968

RESUMO

Traditionally existing 2D culture scaffold has been inappropriately validated due to the failure in generating the precise therapeutic response. Therefore, this leads to the fabrication of 3D culture scaffold resolving the limitations in the in vivo environment. In recent years, tissue engineering played an important role in the field of bio-medical engineering. Biopolymer material, a novel natural material with excellent properties of nontoxic and biodegradable merits can be served as culture scaffold. This review summarizes the modifications of natural biopolymeric culture scaffold with different crosslinkers and their application. In addition, this review provides the recent progress of natural biopolymeric culture scaffold mainly focusing on their properties, synthesizing and modification and application.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Humanos
6.
Bioresour Technol ; 363: 127856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36058538

RESUMO

Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability. The review focuses on conversion of surplus FW into range of value-added products including biosurfactants, biopolymers, diols, and bioenergy. The review includes in-depth description of various types of FW, their chemical and nutrient compositions, current valorization techniques and regulations. Further, it describes limitations of FW as feedstock for biorefineries. In the end, review discuss future scope to provide a clear path for sustainable and net-zero carbon biorefineries.


Assuntos
Alimentos , Eliminação de Resíduos , Biocombustíveis , Biopolímeros , Carboidratos , Carbono , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA