Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 60(6): 481-497, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29380536

RESUMO

Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non-interchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A 'class specific region' (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms. We investigated CESA isoform specificity in the moss, Physcomitrella patens (Hedw.) B. S. G. to gain evolutionary insights into CESA structure/function relationships. Like seed plants, P. patens has oligomeric rosette-type CSCs, but the PpCESAs diverged independently and form a separate CESA clade. We showed that P. patens has two functionally distinct CESAs classes, based on the ability to complement the gametophore-negative phenotype of a ppcesa5 knockout line. Thus, non-interchangeable CESA classes evolved separately in mosses and seed plants. However, testing of chimeric moss CESA genes for complementation demonstrated that functional class-specificity is not determined by the CSR. Sequence analysis and computational modeling showed that the CSR is intrinsically disordered and contains predicted molecular recognition features, consistent with a possible role in CESA oligomerization and explaining the evolution of class-specific sequences without selection for class-specific function.


Assuntos
Bryopsida/enzimologia , Glucosiltransferases/química , Glucosiltransferases/classificação , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Sequência de Aminoácidos , Celulose/metabolismo , Técnicas de Inativação de Genes , Teste de Complementação Genética , Vetores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Filogenia
2.
Sci Rep ; 6: 28696, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345599

RESUMO

A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the ß-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.


Assuntos
Celulose/química , Glucosiltransferases/química , Modelos Moleculares , Proteínas de Plantas/química , Dobramento de Proteína , Celulose/biossíntese , Domínios Proteicos , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA