Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4780, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179785

RESUMO

Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.


Assuntos
Meios de Contraste , Portadores de Fármacos , Gadolínio DTPA , Hepatócitos/efeitos dos fármacos , Lipossomos , Macrófagos/efeitos dos fármacos , Imageamento por Ressonância Magnética , Fosfatidiletanolaminas , Células Cultivadas , Fibrinolíticos , Gadolínio DTPA/efeitos adversos , Gadolínio DTPA/toxicidade , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Fosfatidiletanolaminas/efeitos adversos , Fosfatidiletanolaminas/toxicidade
2.
Drug Metab Dispos ; 34(9): 1563-74, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16782768

RESUMO

Considerable unexplained intersubject variability in the debrisoquine metabolic ratio (urinary debrisoquine/4-hydroxydebrisoquine) exists within individual CYP2D6 genotypes. We speculated that debrisoquine was converted to as yet undisclosed metabolites. Thirteen healthy young volunteers, nine CYP2D6*1 homozygotes [extensive metabolizers (EMs)] and four CYP2D6*4 homozygotes [poor metabolizers (PMs)] took 12.8 mg of debrisoquine hemisulfate by mouth and collected 0- to 8- and 8- to 24-h urines, which were analyzed by gas chromatography-mass spectrometry (GCMS) before and after treatment with beta-glucuronidase. Authentic 3,4-dehydrodebrisoquine was synthesized and characterized by GCMS, liquid chromatography-tandem mass spectrometry, and (1)H NMR. 3,4-Dehydrodebrisoquine is a novel metabolite of debrisoquine excreted variably in 0- to 24-h urine, both in EMs (3.1-27.6% of dose) and PMs (0-2.1% of dose). This metabolite is produced from 4-hydroxydebrisoquine in vitro by human and rat liver microsomes. A previously unstudied CYP2D6*1 homozygote was administered 10.2 mg of 4-hydroxydebrisoquine orally and also excreted 3,4-dehydrodebrisoquine. EMs excreted 6-hydroxydebrisoquine (0-4.8%) and 8-hydroxydebrisoquine (0-1.3%), but these phenolic metabolites were not detected in PM urine. Debrisoquine and 4-hydroxydebrisoquine glucuronides were excreted in a highly genotype-dependent manner. A microsomal activity that probably does not involve cytochrome P450 participates in the further metabolism of 4-hydroxydebrisoquine, which we speculate may also lead to the formation of 1- and 3-hydroxydebrisoquine and their ring-opened products. In conclusion, this study suggests that the traditional metabolic ratio is not a true measure of the debrisoquine 4-hydroxylation capacity of an individual and thus may, in part, explain the wide intragenotype variation in metabolic ratio.


Assuntos
Anti-Hipertensivos/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Debrisoquina/análogos & derivados , Hidroliases/metabolismo , Adulto , Animais , Anti-Hipertensivos/urina , Biotransformação , Citocromo P-450 CYP2D6/genética , Debrisoquina/síntese química , Debrisoquina/farmacocinética , Debrisoquina/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Variação Genética , Genótipo , Glucuronídeos/metabolismo , Humanos , Hidroxilação , Masculino , Microssomos Hepáticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA