Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Urol ; 196(4): 1279-86, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27185613

RESUMO

PURPOSE: A readily available artificial urinary conduit might be substituted for autologous bowel in standard urinary diversions and minimize bowel associated complications. However, the use of large constructs remains challenging as host cellular ingrowth and/or vascularization is limited. We investigated large, reinforced, collagen based tubular constructs in a urinary diversion porcine model and compared subcutaneously pre-implanted constructs to cell seeded and basic constructs. MATERIALS AND METHODS: Reinforced tubular constructs were prepared from type I collagen and biodegradable Vicryl® meshes through standard freezing, lyophilization and cross-linking techniques. Artificial urinary conduits were created in 17 female Landrace pigs, including 7 with a basic untreated construct, 5 with a construct seeded with autologous urothelial and smooth muscle cells, and 5 with a free graft formed by subcutaneous pre-implantation of a basic construct. All pigs were evaluated after 1 month. RESULTS: The survival rate was 94%. At evaluation 1 basic and 1 cell seeded conduit were occluded. Urinary flow was maintained in all conduits created with pre-implanted constructs. Pre-implantation of the basic construct resulted in a vascularized tissue tube, which could be used as a free graft to create an artificial conduit. The outcome was favorable compared to that of the other conduits. Urinary drainage was better, hydroureteronephrosis was limited and tissue regeneration was improved. CONCLUSIONS: Subcutaneous pre-implantation of a basic reinforced tubular construct resulted in a vascularized autologous tube, which may potentially replace bowel in standard urinary diversions. To our knowledge we introduce a straightforward 2-step procedure to create artificial urinary conduits in a large animal model.


Assuntos
Bioprótese , Colágeno Tipo I/química , Poliglactina 910 , Engenharia Tecidual/métodos , Derivação Urinária/métodos , Animais , Feminino , Teste de Materiais , Modelos Animais , Suínos , Bexiga Urinária/cirurgia
2.
J Urol ; 188(2): 653-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22704444

RESUMO

PURPOSE: The ileal conduit has been considered the gold standard urinary diversion for patients with bladder cancer and pediatric patients. Complications are mainly related to the use of gastrointestinal tissue. Tissue engineering may be the technical platform on which to develop alternatives to gastrointestinal tissue. We developed a collagen-polymer conduit and evaluated its applicability for urinary diversion in pigs. MATERIALS AND METHODS: Tubular constructs 12 cm long and 15 mm in diameter were prepared from bovine type I collagen and Vypro® II synthetic polymer mesh. Characterized tubes were sterilized, seeded with and without primary porcine bladder urothelial cells, and implanted as an incontinent urostomy using the right ureter in 10 female Landrace pigs. At 1 month the newly formed tissue structure was functionally and microscopically evaluated by loopogram and immunohistochemistry, respectively. RESULTS: The survival rate was 80% with 1 related and 1 unrelated death. By 1 month the collagen was resorbed and a retroperitoneal tunnel had formed that withstood 40 cm H(2)O water pressure. In 5 cases the tunnel functioned as a urostomy. Histological analysis revealed a moderate immune response, neovascularization and urothelial cells in the construct lumen. The polymer mesh provoked fibroblast deposition and tissue contraction. No major differences were observed between cellular and acellular constructs. CONCLUSIONS: After implanting the tubular constructs a retroperitoneal tunnel was formed that functioned as a urinary conduit in most cases. Improved large tubular scaffolds may generate alternatives to gastrointestinal tissue for urinary diversion.


Assuntos
Colágeno Tipo I , Teste de Materiais , Poliglactina 910 , Polipropilenos , Telas Cirúrgicas , Engenharia Tecidual/métodos , Alicerces Teciduais , Derivação Urinária/métodos , Actinas/análise , Animais , Desenho de Equipamento , Feminino , Queratinas/análise , Microscopia Eletrônica de Varredura , Suínos , Resistência à Tração , Vimentina/análise , Cicatrização/fisiologia
3.
J Tissue Eng Regen Med ; 11(8): 2241-2249, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-26880718

RESUMO

The use of bowel tissue for urinary diversion can be associated with severe complications, and regenerative medicine may circumvent this by providing an engineered conduit. In this study, a novel tubular construct was identified for this purpose. Three constructs (diameter 15 mm) were prepared from type I collagen and either (a) a semi-biodegradable Vypro II polymer (COL-Vypro), (b) a rapidly biodegradable Vicryl polymer (COL-Vicryl) or (c) an additional collagenous layer (COL-DUAL). After freezing, lyophilization and crosslinking, all constructs showed a porous structure with a two-fold higher strength for the polymer-containing constructs. These constructs were connected to full bladder defects of 11 female pigs and evaluated after 1 (n = 4) or 3 months (n = 5). With respect to surgical handling, the polymer-containing constructs were superior. All pigs voided normally without leakage and the survival rate was 82%. For the implanted COL-Vypro constructs (8/9), stone formation was observed. COL-DUAL and COL-Vicryl showed better biocompatibility and only small remnants were found 1 month post-implantation. Histological and immunohistochemical analysis showed the best regeneration for COL-Vicryl with respect to urothelium; muscle pedicles and elastin formation were best developed in the COL-Vicryl constructs. In this study, COL-Vicryl constructs were superior in both biocompatibility and bladder tissue regeneration and have high potential for artificial urinary diversions. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Bioprótese , Teste de Materiais , Bexiga Urinária , Derivação Urinária/métodos , Animais , Colágeno Tipo I/química , Feminino , Poliglactina 910/química , Polipropilenos/química , Suínos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/cirurgia
4.
Tissue Eng Part C Methods ; 18(10): 731-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22480276

RESUMO

Adequate cellular in-growth into biomaterials is one of the fundamental requirements of scaffolds used in regenerative medicine. Type I collagen is the most commonly used material for soft tissue engineering, because it is nonimmunogenic and a highly porous network for cellular support can be produced. However, in general, adequate cell in-growth and cell seeding has been suboptimal. In this study we prepared collagen scaffolds of different collagen densities and investigated the cellular distribution. We also prepared a hybrid polymer-collagen scaffold to achieve an optimal cellular distribution as well as sufficient mechanical strength. Collagen scaffolds [ranging from 0.3% to 0.8% (w/v)] with and without a mechanically stable polymer knitting [poly-caprolactone (PCL)] were prepared. The porous structure of collagen scaffolds was characterized using scanning electron microscopy and hematoxylin-eosin staining. The mechanical strength of hybrid scaffolds (collagen with or without PCL) was determined using tensile strength analysis. Cellular in-growth and interconnectivity were evaluated using fluorescent bead distribution and human bladder smooth muscle cells and human urothelium seeding. The lower density collagen scaffolds showed remarkably deeper cellular penetration and by combining it with PCL knitting the tensile strength was enhanced. This study indicated that a hybrid scaffold prepared from 0.4% collagen strengthened with knitting achieved the best cellular distribution.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Colágeno/farmacologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Poliésteres/farmacologia , Animais , Bovinos , Colágeno/ultraestrutura , Imunofluorescência , Humanos , Microesferas , Miócitos de Músculo Liso/metabolismo , Resistência à Tração/efeitos dos fármacos , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA