Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Chem ; 93(40): 13658-13666, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591463

RESUMO

Currently, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-MS (LC-MS) are the primary methods used to detect pesticides and their metabolites for biomonitoring of exposure. Although GC-MS and LC-MS can provide accurate and sensitive measurements, these techniques are not suitable for point-of-care or in-field biomonitoring applications. The objective of this work is to develop a smartphone-based dual-channel immunochromatographic test strip (ICTS) for on-site biomonitoring of exposure to cypermethrin by simultaneous detection of cypermethrin and its metabolite, 3-phenoxybenzoic acid (3-PBA). Polymer carbon dots (PCDs) with ultrahigh fluorescent brightness were synthesized and used as a signal amplifier in ICTS assay. Cypermethrin (a representative pyrethroid pesticide) and its major metabolite 3-PBA were simultaneously detected to provide more comprehensive analysis of cypermethrin exposure. After competitive immunoreactions between the target sample and the coating antigens preloaded on the test line, the tracer antibody (PCD-conjugated antibody) was quantitatively captured on the test lines. The captured PCDs were inversely proportional to the amount of the target compound in the sample. The red fluorescence on the test line was then recorded using a smartphone-based device capable of conducting image analysis and recording. Under optimal conditions, the sensor showed excellent linear responses for detecting cypermethrin and 3-PBA ranging from 1 to 100 ng/mL and from 0.1 to 100 ng/mL, respectively, and the limits of detection were calculated to be ∼0.35 ng/mL for cypermethrin and ∼0.04 ng/mL for 3-PBA. The results demonstrate that the ICTS device is promising for accurate point-of-care biomonitoring of pesticide exposure.


Assuntos
Piretrinas , Pontos Quânticos , Benzoatos , Polímeros , Smartphone
2.
Regul Toxicol Pharmacol ; 120: 104839, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33301868

RESUMO

Bisphenol A (BPA) is a chemical used to manufacture bisphenol A glycidyl methacrylate (BisGMA). BisGMA has been used for decades in dental composite restoratives, sealants, and adhesives. Based on published studies, exposure to low concentrations of BPA are possible from dental and orthodontic devices. The serum BPA concentrations arising from such devices and oral doses were predicted using a PBPK model in children and adult females based on 1) published extraction data for cured and uncured 3M ESPE Filtek Supreme Ultra Flowable, 3M ESPE Filtek Bulk Fill Restorative, and 3M ESPE Clinpro Sealant and 2) published 20% ethanol/water and water rinsate data following orthodontic application with 3M ESPE Transbond MIP Primer and 3M ESPE Transbond XT Adhesive. Predicted oral exposure to BPA arising from these dental and orthodontic devices is low (median <10 ng/treatment) and predicted serum BPA concentrations were also low (<10-4 nM). Even the maximum predicted exposure in this study (533.2 ng/treatment) yields a margin of exposure of 7.5 relative to the EFSA t-TDI (4 µg/kg-day) and is only 2.8% of the daily BPA exposure for the US population in a 58-kg woman (15,660 ng/day). Therefore, the exposure to BPA arising from the 3M ESPE dental and orthodontic devices evaluated in this study is negligible relative to daily BPA exposure in the general population and these potential BPA sources do not constitute a risk to patients.


Assuntos
Compostos Benzidrílicos/sangue , Resinas Compostas/administração & dosagem , Cimentos Dentários/farmacologia , Teste de Materiais/métodos , Modelos Biológicos , Fenóis/sangue , Selantes de Fossas e Fissuras/farmacologia , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Resinas Compostas/metabolismo , Cimentos Dentários/metabolismo , Feminino , Previsões , Humanos , Masculino , Selantes de Fossas e Fissuras/metabolismo , Medição de Risco/métodos , Resultado do Tratamento
3.
Anal Chem ; 81(22): 9314-20, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19839597

RESUMO

A portable, rapid, and sensitive assessment of subclinical organophosphorus (OP) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Because of the extent of interindividual ChE activity variability, ChE biomonitoring often requires an initial baseline determination (noninhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript describes an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (after reactivation by an oxime, i.e., pralidoxime iodide) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity (5% ChE inhibition) and selectivity. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experimental parameters, e.g., inhibition and reactivation time, have been optimized such that 92-95% of ChE reactivation can be achieved over a broad range of ChE inhibition (5-94%) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements. On the basis of the double determinations of enzyme activity, this flow-injection device has been successfully used to detect paraoxon inhibition efficiency in saliva samples (95% of ChE activity is due to butyrylcholinesterase), which demonstrated its promise as a sensitive monitor of OP exposure in biological fluids. Since it excludes inter- or intraindividual variation in the normal levels of ChE, this new CNT-based electrochemical sensor thus provides a sensitive and quantitative tool for point-of-care assessment and noninvasive biomonitoring of the exposure to OP pesticides and chemical nerve agents.


Assuntos
Colinesterases/metabolismo , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Compostos Organofosforados/análise , Paraoxon/análise , Saliva/enzimologia , Animais , Ativação Enzimática/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
4.
Toxicol Sci ; 172(2): 330-343, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550007

RESUMO

Saliva has become a favorable sample matrix for biomonitoring due to its noninvasive attributes and overall flexibility in collection. To ensure measured salivary concentrations reflect the exposure, a solid understanding of the salivary transport mechanism and relationships between salivary concentrations and other monitored matrices (ie, blood, urine) is needed. Salivary transport of a commonly applied herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was observed in vitro and in vivo and a physiologically based pharmacokinetic (PBPK) model was developed to translate observations from the cell culture model to those in animal models and further evaluate 2,4-D kinetics in humans. Although apparent differences in experimental in vitro and in vivo saliva:plasma ratios (0.034 and 0.0079) were observed, simulations with the PBPK model demonstrated dynamic time and dose-dependent saliva:plasma ratios, elucidating key mechanisms affecting salivary transport. The model suggested that 2,4-D exhibited diffusion-limited transport to saliva and was additionally impacted by protein binding saturation and permeability across the salivary gland. Consideration of sampling times post-exposure and potential saturation of transport mechanisms are then critical aspects for interpreting salivary 2,4-D biomonitoring observations. This work utilized PBPK modeling in in vitro to in vivo translation to explore benefits and limitations of salivary analysis for occupational biomonitoring.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacocinética , Ácido 2,4-Diclorofenoxiacético/toxicidade , Monitoramento Biológico/métodos , Modelos Biológicos , Saliva/química , Ácido 2,4-Diclorofenoxiacético/sangue , Administração Oral , Animais , Transporte Biológico , Relação Dose-Resposta a Droga , Humanos , Injeções Intravenosas , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/metabolismo , Fatores de Tempo , Toxicocinética
5.
Toxicology ; 410: 171-181, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118794

RESUMO

The objective of this study was to evaluate the potential for non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva. Using an in vitro rat salivary gland epithelial cell (SGEC) system, a collection of experiments investigating chemical protein binding, temporal and directional transport, as well as competitive transport with para-aminohippuric acid (PAH), a substrate for renal organic anion transporters, was conducted to identify cellular transport parameters required to computationally model salivary transport of 2,4-D. Additionally, a physiological protein gradient was implemented to mimic physiologically relevant concentrations of protein in rat plasma and saliva, and under these conditions the transfer of 2,4-D was markedly slower, driven by increased protein binding (i.e. reduced free 2,4-D species available to cross salivary barrier). The rate of transfer was directly proportional to the amount of unbound 2,4-D and demonstrated no indication of active transport. An in vivo assessment of 2,4-D exposure in rats revealed non-linear protein binding in plasma, indicating saturated protein binding and increased levels of unbound 2,4-D species at higher doses. A strong correlation between 2,4-D concentrations in saliva and unbound 2,4-D in plasma was observed (Pearson correlation coefficient = 0.95). Saliva:plasma 2,4-D ratios measured in vivo (0.0079) were consistent within the linear protein binding range and expected 2,4-D levels from occupational exposures but were significantly different than ratios measured in vitro (physiological conditions) (0.034), possibly due to 2,4-D concentrations in saliva not being at equilibrium with 2,4-D concentrations in blood, as well as physiological features absent in in vitro settings (e.g. blood flow). We demonstrated that 2,4-D is consistently transported into saliva using both in vitro and in vivo models, making 2,4-D a potential candidate for human non-invasive salivary biomonitoring. Further work is needed to understand whether current sensor limits of detection are sufficient to measure occupationally relevant exposures.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Monitoramento Ambiental/métodos , Herbicidas/análise , Saliva/química , Ácido 2,4-Diclorofenoxiacético/sangue , Ácido 2,4-Diclorofenoxiacético/farmacocinética , Animais , Polaridade Celular/efeitos dos fármacos , Células Epiteliais , Herbicidas/sangue , Herbicidas/farmacocinética , Masculino , Exposição Ocupacional , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Junções Íntimas/efeitos dos fármacos
6.
J Expo Sci Environ Epidemiol ; 27(1): 72-77, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26555474

RESUMO

Direct measurements of exposure represent the most accurate assessment of a subject's true exposure. The clearance of many drugs and chemicals, including pesticides such as chlorpyrifos (CPF), can be detected non-invasively in saliva. Here we have developed a serous-acinar transwell model system as an in vitro screening platform to prioritize chemicals for non-invasive biomonitoring through salivary clearance mechanisms. Rat primary serous-acinar cells express both α-amylase and aquaporin-5 proteins and develop significant tight junctions at postconfluence - a feature necessary for chemical transport studies in vitro. CPF exhibited bidirectional passage across the serous-acinar barrier that was disproportional to the passage of a cell impermeable chemical (lucifer yellow), consistent with a hypothesized passive diffusion process. CPF was metabolized to trichlorpyridinol (TCPy) by serous-acinar cells, and TCPy also displayed bidirectional diffusion in the transwell assay. This model system should prove useful as an in vitro screening platform to support the non-invasive monitoring of toxicons and pharmacons in human saliva and provide guidance for development of advanced in vitro screening platforms utilizing primary human salivary gland epithelial cells.


Assuntos
Clorpirifos/análise , Inseticidas/análise , Saliva/metabolismo , Análise de Variância , Animais , Bioensaio , Biomarcadores/metabolismo , Clorpirifos/metabolismo , Monitoramento Ambiental , Células Epiteliais/metabolismo , Técnicas In Vitro , Inseticidas/metabolismo , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
7.
Biointerphases ; 10(3): 031003, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26178265

RESUMO

Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 µg/ml for the 24-h period characteristic of many in-vitro studies.


Assuntos
Ligas de Ouro/química , Ligas de Ouro/toxicidade , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Prata/química , Prata/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fenômenos Químicos , Macrófagos/fisiologia , Camundongos , Microscopia Eletrônica , Nanopartículas/ultraestrutura , Estresse Oxidativo , Solubilidade
8.
Toxicol Sci ; 113(2): 315-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19920072

RESUMO

Biological monitoring (biomonitoring) to quantify systemic exposure to the organophosphorus insecticide chlorpyrifos (CPF) has historically focused on the quantitation of major CPF metabolites in urine. Noninvasive techniques are being advocated as novel means of biomonitoring for a variety of potential toxicants, including pesticides (like CPF), and saliva has been suggested as an ideal body fluid. However, in order to be acceptable, there is a need to understand salivary pharmacokinetics of CPF metabolites in order to extrapolate saliva measurements to whole-body exposures. In this context, in vivo pharmacokinetics of 3,5,6-trichloro-2-pyridinol (TCPy), the major chemical-specific metabolite of CPF, was quantitatively evaluated in rat saliva. Experimental results suggest that TCPy partitioning from plasma to saliva in rats is relatively constant over a range of varying physiological conditions. TCPy pharmacokinetics was very similar in blood and saliva (area under the curve values were proportional and elimination rates ranged from 0.007 to 0.019 per hour), and saliva/blood TCPy concentration ratios were not affected by TCPy concentration in blood (p = 0.35) or saliva flow rate (p = 0.26). The TCPy concentration in saliva was highly correlated to the amount of unbound TCPy in plasma (r = 0.96), and the amount of TCPy protein binding in plasma was substantial (98.5%). The median saliva/blood concentration ratio (0.049) was integrated as a saliva/blood TCPy partitioning coefficient within an existing physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF. The model was capable of accurately predicting TCPy concentrations in saliva over a range of blood concentrations. These studies suggest that saliva TCPy concentration can be utilized to ascertain CPF exposure. It is envisioned that the PBPK/PD can likewise be used to estimate CPF dosimetry based on the quantitation of TCPy in spot saliva samples obtained from biomonitoring studies.


Assuntos
Monitoramento Ambiental/métodos , Inseticidas/farmacocinética , Piridonas/farmacocinética , Saliva/metabolismo , Animais , Clorpirifos/sangue , Clorpirifos/farmacocinética , Inseticidas/sangue , Masculino , Piridonas/sangue , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA