Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chembiochem ; 24(9): e202300001, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821718

RESUMO

Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants. As part of an effort to overcome this, aromatic acid CoA ligases involved in microbial aromatic degradation were identified and screened against a broad panel of substituted cinnamic and benzoic acids involved in plant lignification. Functional fingerprinting of this ligase library identified four robust, highly active enzymes capable of facile, rapid, and high-yield synthesis of aromatic acid CoA thioesters under mild aqueous reaction conditions mimicking in planta activity.


Assuntos
Coenzima A Ligases , Ligases , Coenzima A Ligases/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Ésteres
2.
New Phytol ; 237(1): 251-264, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196006

RESUMO

Ester-linked p-coumarate (pCA) is a hallmark feature of the secondary cell walls in commelinid monocot plants. It has been shown that pCA groups arise during lignin polymerisation from the participation of monolignol conjugates assembled by p-coumaroyl-CoA:monolignol transferase (PMT) enzymes, members of the BAHD superfamily of acyltransferases. Herein, we report that a eudicot species, kenaf (Hibiscus cannabinus), naturally contains p-coumaroylated lignin in the core tissues of the stems but not in the bast fibres. Moreover, we identified a novel acyltransferase, HcPMT, that shares <30% amino acid identity with known monocot PMT sequences. Recombinant HcPMT showed a preference in enzyme assays for p-coumaroyl-CoA and benzoyl-CoA as acyl donor substrates and sinapyl alcohol as an acyl acceptor. Heterologous expression of HcPMT in hybrid poplar trees led to the incorporation of pCA in lignin, but no improvement in the saccharification potential of the wood. This work illustrates the value in mining diverse plant taxa for new monolignol acyltransferases. Furthermore, the occurrence of pCA outside monocot lineages may represent another example of convergent evolution in lignin structure. This discovery expands textbook views on cell wall biochemistry and provides a new molecular tool for engineering the lignin of biomass feedstock plants.


Assuntos
Lignina , Populus , Lignina/metabolismo , Parede Celular/metabolismo , Aciltransferases/metabolismo , Populus/metabolismo , Coenzima A/análise , Coenzima A/metabolismo
3.
Plant Physiol ; 189(1): 37-48, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134228

RESUMO

Plant BAHD acyltransferases perform a wide range of enzymatic tasks in primary and secondary metabolism. Acyl-CoA monolignol transferases, which couple a CoA substrate to a monolignol creating an ester linkage, represent a more recent class of such acyltransferases. The resulting conjugates may be used for plant defense but are also deployed as important "monomers" for lignification, in which they are incorporated into the growing lignin polymer chain. p-Coumaroyl-CoA monolignol transferases (PMTs) increase the production of monolignol p-coumarates, and feruloyl-CoA monolignol transferases (FMTs) catalyze the production of monolignol ferulate conjugates. We identified putative FMT and PMT enzymes in sorghum (Sorghum bicolor) and switchgrass (Panicum virgatum) and have compared their activities to those of known monolignol transferases. The putative FMT enzymes produced both monolignol ferulate and monolignol p-coumarate conjugates, whereas the putative PMT enzymes produced monolignol p-coumarate conjugates. Enzyme activity measurements revealed that the putative FMT enzymes are not as efficient as the rice (Oryza sativa) control OsFMT enzyme under the conditions tested, but the SbPMT enzyme is as active as the control OsPMT enzyme. These putative FMTs and PMTs were transformed into Arabidopsis (Arabidopsis thaliana) to test their activities and abilities to biosynthesize monolignol conjugates for lignification in planta. The presence of ferulates and p-coumarates on the lignin of these transformants indicated that the putative FMTs and PMTs act as functional feruloyl-CoA and p-coumaroyl-CoA monolignol transferases within plants.


Assuntos
Arabidopsis , Oryza , Panicum , Sorghum , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lignina/metabolismo , Oryza/metabolismo , Panicum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Transferases
4.
Plant Physiol ; 188(2): 1014-1027, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34977949

RESUMO

Poplar (Populus) lignin is naturally acylated with p-hydroxybenzoate ester moieties. However, the enzyme(s) involved in the biosynthesis of the monolignol-p-hydroxybenzoates have remained largely unknown. Here, we performed an in vitro screen of the Populus trichocarpa BAHD acyltransferase superfamily (116 genes) using a wheatgerm cell-free translation system and found five enzymes capable of producing monolignol-p-hydroxybenzoates. We then compared the transcript abundance of the five corresponding genes with p-hydroxybenzoate concentrations using naturally occurring unrelated genotypes of P. trichocarpa and revealed a positive correlation between the expression of p-hydroxybenzoyl-CoA monolig-nol transferase (pHBMT1, Potri.001G448000) and p-hydroxybenzoate levels. To test whether pHBMT1 is responsible for the biosynthesis of monolignol-p-hydroxybenzoates, we overexpressed pHBMT1 in hybrid poplar (Populus alba × P. grandidentata) (35S::pHBMT1 and C4H::pHBMT1). Using three complementary analytical methods, we showed that there was an increase in soluble monolignol-p-hydroxybenzoates and cell-wall-bound monolignol-p-hydroxybenzoates in the poplar transgenics. As these pendent groups are ester-linked, saponification releases p-hydroxybenzoate, a precursor to parabens that are used in pharmaceuticals and cosmetics. This identified gene could therefore be used to engineer lignocellulosic biomass with increased value for emerging biorefinery strategies.


Assuntos
Acilação/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Lignina/biossíntese , Lignina/genética , Populus/genética , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas
5.
Plant Cell Physiol ; 63(6): 744-754, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275214

RESUMO

The complexity of lignin structure impedes efficient cell wall digestibility. Native lignin is composed of a mixture of three dominant monomers, coupled together through a variety of linkages. Work over the past few decades has demonstrated that lignin composition can be altered through a variety of mutational and transgenic approaches such that the polymer is derived almost entirely from a single monomer. In this study, we investigated changes to lignin structure and digestibility in Arabidopsis thaliana in near-single-monolignol transgenics and mutants and determined whether novel monolignol conjugates, produced by a FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) or a p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT), could be integrated into these novel polymers to further improve saccharification efficiency. Monolignol conjugates, including a new conjugate of interest, p-coumaryl p-coumarate, were successfully integrated into high-H, high-G and high-S lignins in A. thaliana. Regardless of lignin composition, FMT- and PMT-expressing plants produced monolignol ferulates and monolignol p-coumarates, respectively, and incorporated them into their lignin. Through the production and incorporation of monolignol conjugates into near-single-monolignol lignins, we demonstrated that substrate availability, rather than monolignol transferase substrate preference, is the most important determining factor in the production of monolignol conjugates, and lignin composition helps dictate cell wall digestibility.


Assuntos
Arabidopsis , Lignina , Arabidopsis/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo , Transferases/análise , Transferases/metabolismo
6.
Plant Cell Environ ; 45(1): 248-261, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697825

RESUMO

Ferulate-5-hydroxylase is a key enzyme involved in the conversion of the guaiacyl monolignol to the syringyl monolignol in angiosperms. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease. Stem rot caused by the fungus Sclerotinia sclerotiorum in Brassica napus causes severe losses in its production. To date, there is no information about the effect of the lignin monomer ratio on the resistance to S. sclerotiorum in B. napus. Four dominantly expressed ferulate-5-hydroxylase genes were concertedly knocked out by CRISPR/Cas9 in B. napus, and three mutant lines were generated. The S/G lignin compositional ratio was decreased compared to that of the wild type based on the results of Mӓule staining and 2D-NMR profiling in KO-7. The resistance to S. sclerotiorum in stems and leaves increased for the three f5h mutant lines compared with WT. Furthermore, we found that the stem strength of f5h mutant lines was significantly increased. Overall, we demonstrate for the first time that decreasing the S/G ratio by knocking out of the F5H gene improves S. sclerotiorum resistance in B. napus and increases stem strength.


Assuntos
Ascomicetos/patogenicidade , Brassica napus/genética , Brassica napus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Brassica napus/metabolismo , Sistemas CRISPR-Cas , Parede Celular/química , Parede Celular/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genoma de Planta , Lignina/metabolismo , Família Multigênica , Mutação , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/genética , Plantas Geneticamente Modificadas
7.
Plant Biotechnol J ; 19(9): 1878-1886, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33949064

RESUMO

To what degree can the lignin subunits in a monocot be derived from monolignol ferulate (ML-FA) conjugates? This simple question comes with a complex set of variables. Three potential requirements for optimizing ML-FA production are as follows: (1) The presence of an active FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) enzyme throughout monolignol production; (2) Suppression or elimination of enzymatic pathways competing for monolignols and intermediates during lignin biosynthesis; and (3) Exclusion of alternative phenolic compounds that participate in lignification. A 16-fold increase in lignin-bound ML-FA incorporation was observed by introducing an AsFMT gene into Brachypodium distachyon. On its own, knocking out the native p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (BdPMT) pathway that competes for monolignols and the p-coumaroyl-CoA intermediate did not change ML-FA incorporation, nor did partial loss of CINNAMOYL-CoA REDUCTASE1 (CCR1) function, which reduced metabolic flux to monolignols. However, stacking AsFMT into the Bdpmt-1 mutant resulted in a 32-fold increase in ML-FA incorporation into lignin over the wild-type level.


Assuntos
Brachypodium , Brachypodium/genética , Lignina , Proteínas de Plantas/genética , Transferases
8.
Plant Physiol ; 175(3): 1058-1067, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28894022

RESUMO

The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant's defense system.


Assuntos
Lignina/metabolismo , Phoeniceae/metabolismo , Folhas de Planta/metabolismo , Parede Celular/metabolismo , Cromatografia em Gel , Lignina/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espanha
9.
Plant Physiol ; 174(2): 1028-1036, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28416705

RESUMO

Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidopsis (Arabidopsis thaliana) inflorescence stem. Previous work demonstrated that, when lignin biosynthesis is suppressed in fiber and tracheary element cells with thickened walls, fibers become lignin-depleted while vascular bundles still lignify, suggesting that nonlignifying neighboring xylem cells are contributing to lignification. In this work, we dissect the contributions of different cell types, specifically xylary parenchyma and fiber cells, to lignification of the stem using cell-type-specific promoters to either knock down an essential monolignol biosynthetic gene or to introduce novel monolignol conjugates. Analysis of either reductions in lignin in knockdown lines, or the addition of novel monolignol conjugates, directly identifies the xylary parenchyma and fiber cell populations that contribute to the stem lignification and the developmental timing at which each contribution is most important.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Lignina/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Biomassa , Vias Biossintéticas , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Regiões Promotoras Genéticas , Xilema/citologia , Xilema/metabolismo
10.
Plant Physiol ; 173(2): 998-1016, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940492

RESUMO

Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in ß-ß and ß-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.


Assuntos
Aciltransferases/genética , Flavonoides/metabolismo , Inativação Gênica , Lignina/metabolismo , Zea mays/enzimologia , Zea mays/genética , Aciltransferases/metabolismo , Biomassa , Parede Celular/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/genética , Mutação/genética , Fenóis/metabolismo , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Zea mays/crescimento & desenvolvimento
11.
Plant Physiol ; 169(4): 2992-3001, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26511914

RESUMO

Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate conjugates on lignification and plant growth and development has not yet been examined in plants that do not inherently possess p-coumarates on their lignins. The rice (Oryza sativa) p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE gene was introduced into two eudicots, Arabidopsis (Arabidopsis thaliana) and poplar (Populus alba × grandidentata), and a series of analytical methods was used to show the incorporation of the ensuing monolignol p-coumarate conjugates into the lignin of these plants. In poplar, specifically, the addition of these conjugates did not occur at the expense of the naturally incorporated monolignol p-hydroxybenzoates. Plants expressing the p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE transgene can therefore produce monolignol p-coumarate conjugates essentially without competing with the formation of other acylated monolignols and without drastically impacting normal monolignol production.


Assuntos
Arabidopsis/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Populus/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Cromatografia Gasosa , Ácidos Cumáricos/química , Lignina/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Engenharia Metabólica/métodos , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Propionatos , Reprodutibilidade dos Testes
12.
Plant Cell ; 25(10): 3988-99, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24096341

RESUMO

Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignifying xylary parenchyma cells can contribute to the lignification of tracheary elements and fibers. This study demonstrates that lignin deposition is not exclusively a postmortem event, but also occurs prior to programmed cell death. Radiolabeled monolignols were not detected in the cytoplasm or vacuoles of tracheary elements or neighbors. To experimentally define which cells in lignifying tissues contribute to lignification in intact plants, a microRNA against cinnamoyl CoA-reductase1 driven by the promoter from cellulose synthase7 (ProCESA7:miRNA CCR1) was used to silence monolignol biosynthesis specifically in cells developing lignified secondary cell walls. When monolignol biosynthesis in ProCESA7:miRNA CCR1 lines was silenced in the lignifying cells themselves, but not in the neighboring cells, lignin was still deposited in the xylem secondary cell walls. Surprisingly, a dramatic reduction in cell wall lignification of extraxylary fiber cells demonstrates that extraxylary fibers undergo cell autonomous lignification.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Parede Celular/metabolismo , Lignina/biossíntese , Xilema/citologia , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Apoptose , Arabidopsis/citologia , Arabidopsis/genética , Inativação Gênica , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
13.
Plant Physiol ; 166(2): 798-807, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25157028

RESUMO

Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition.


Assuntos
Parede Celular/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Xilema/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Polimerização
14.
Curr Opin Biotechnol ; 56: 69-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30347315

RESUMO

Lignin is a highly abundant polymer in plant cell walls that is essential for land plants' ability to stand upright and transport water. Inside plant cells, lignin monomers, called monolignols, are made from phenylalanine via a multistep pathway. In the cell wall, monomers move freely, until they encounter stationary oxidative enzymes that determine where the lignin polymer forms. However, it remains unclear how lignin monomers are trafficked from inside the cell to the cell wall. Although multiple lines of circumstantial evidence implicate transporters, additional possible mechanisms include the diffusion of monomers across lipid bilayers and the release of monolignol glucosides stored in vacuoles. There are therefore potentially diverse and overlapping mechanisms of monolignol export.


Assuntos
Transporte Biológico , Parede Celular/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Parede Celular/química , Glucosídeos/metabolismo , Células Vegetais/metabolismo , Plantas/classificação , Plantas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA