Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(37): 16898-16904, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074552

RESUMO

Traditionally, the synthesis of polyrotaxanes has been limited by synthetic methods that rely on an innate affinity between the rings and the polymer chains. The use of rotaxane-forming molecular pumps allows this limitation to be circumvented in the production of non-equilibrium polyrotaxanes in which rings are trapped on polymer chains for which they have little or no affinity. Pumping cassettes, each composed of a bipyridinium unit linked (i) by a bismethylene bridge to a terminal 2,6-dimethylpyridinium cationic unit and (ii) by a methylene group to an isopropylphenylene steric barrier, were attached using copper-catalyzed azide-alkyne cycloadditions to the ends of a polypropylene glycol (PPG) chain of number-average molecular weight Mn ≈ 2200. Using a one-pot electrosynthetic protocol, a series of PPG-based polyrotaxanes with cyclobis(paraquat-p-phenylene) as the rings were synthesized. Despite the steric bulk of the PPG backbone, it was found to be a suitable collecting chain for threading up to 10 rings. The pumping of two rings is sufficient to render these hydrophobic polymers soluble in aqueous solution. Their hydrodynamic diameters and diffusion constants vary according to the number of pumped rings. The non-equilibrium nature of these polyrotaxanes is manifested in their gradual degradation and dethreading at elevated temperatures.


Assuntos
Rotaxanos , Alcinos , Azidas , Cobre/química , Paraquat , Polímeros/química , Propilenoglicóis , Rotaxanos/química
2.
Cell Mol Life Sci ; 78(13): 5225-5243, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33974093

RESUMO

Among many nanoparticle-based delivery platforms, liposomes have been particularly successful with many formulations passed into clinical applications. They are well-established and effective gene and/or drug delivery systems, widely used in cancer therapy including breast cancer. In this review we discuss liposome design with the targeting feature and triggering functions. We also summarise the recent progress (since 2014) in liposome-based therapeutics for breast cancer including chemotherapy and gene therapy. We finally identify some challenges on the liposome technology development for the future clinical translation.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Lipossomos/química , Nanopartículas/química
3.
J Am Chem Soc ; 142(13): 6196-6205, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150680

RESUMO

During the past few decades, the study of the single polymer chain has attracted considerable attention with the goal of exploring the structure-property relationship of polymers. It still, however, remains challenging due to the variability and low atomic resolution of the amorphous single polymer chain. Here, we demonstrated a new strategy to visualize the single metallopolymer chain with a hexameric or trimeric supramolecule as a repeat unit, in which Ru(II) with strong coordination and Fe(II) with weak coordination were combined together in a stepwise manner. With the help of ultrahigh-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM) and scanning tunneling spectroscopy (STS), we were able to directly visualize both Ru(II) and Fe(II), which act as staining reagents on the repeat units, thus providing detailed structural information for the single polymer chain. As such, the direct visualization of the single random polymer chain is realized to enhance the characterization of polymers at the single-molecule level.


Assuntos
Complexos de Coordenação/química , Ferro/química , Polímeros/química , Rutênio/química , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Microscopia de Tunelamento , Polímeros/síntese química
4.
Nanotechnology ; 31(39): 395601, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32554896

RESUMO

The galactose-based polymer is a promising drug delivery material. Herein, a new galactose-based block copolymer, termed as 6-O-vinyl sebacic acid-D-galactopyranosyl ester block 3-acrylamide phenylboric acid p(OVNG-b-AAPBA) was successfully synthesized by 'block copolymer' method. The structure of p(OVNG-b-AAPBA) was proved by nuclear magnetic hydrogen spectrum (1 HNMR) and infrared (IR), the thermal stability was observed by thermogravimetric analyzer, and the molecular weights (Mw and Mn) were demonstrated by Gel permeation chromatography (GPC). The above test results suggested that the polymer of p(OVNG-b-AAPBA) was successfully synthesized, and it had optimal molecular weight and thermal stability, which could be used for investigating the drug delivery system. Then, this block copolymer was prepared to the nanoparticle (NP), these NPs had a satisfactory morphology, and their safety was verified by MTT and chronic animal toxicology test. In addition, insulin was encapsulated by the p(OVNG-b-AAPBA) NPs, the drug loading rate and encapsulation efficiency increased with that of AAPBA in the polymer. Finally, this study confirmed that these NPs can effectively maintain the blood sugar of diabetic mice at 96 h. In conclusion, the current study suggested that the insulin-loaded galactose-based polymer-block-3-acrylamide phenylboric acid NPs had slow-release/glucose-responsive drug release performance, which might play an active role in the diabetes therapy.


Assuntos
Ácidos Borônicos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Galactose/química , Insulina/administração & dosagem , Animais , Linhagem Celular , Preparações de Ação Retardada , Feminino , Humanos , Insulina/química , Insulina/farmacologia , Masculino , Camundongos , Nanopartículas , Polímeros/síntese química , Polímeros/química
5.
J Exp Bot ; 70(21): 6071-6083, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31559423

RESUMO

Cellulose microfibrils, which form the mechanical framework of the plant cell wall, are synthesized by the cellulose synthase complex in the plasma membrane. Here, we introduced point mutations into the catalytic domain of cellulose synthase 6 (CESA6) in Arabidopsis to produce enhanced yellow fluorescent protein (EYFP)-tagged CESA6D395N, CESA6Q823E, and CESA6D395N+Q823E, which were exogenously produced in a cesa6 null mutant, prc1-1. Comparison of these mutants in terms of plant phenotype, cellulose content, cellulose synthase complex dynamics, and organization of cellulose microfibrils showed that prc1-1 expressing EYFP:CESA6D395N or CESA6D395N+Q823E was nearly the same as prc1-1, whereas prc1-1 expressing EYFP:CESA6Q823E was almost identical to wild type and prc1-1 expressing EYFP:WT CESA6, indicating that CESA6D395N and CESA6D395N+Q823E do not function in cellulose synthesis, while CESA6Q823E is still functionally active. Total internal reflection fluorescence microscopy and confocal microscopy were used to monitor the subcellular localization of these proteins. We found that EYFP:CESA6D395N and EYFP:CESA6D395N+Q823E were absent from subcellular regions containing the Golgi and the plasma membrane, and they appeared to be retained in the endoplasmic reticulum. By contrast, EYFP:CESA6Q823E had a normal localization pattern, like that of wild-type EYFP:CESA6. Our results demonstrate that the D395N mutation in CESA6 interrupts its normal transport to the Golgi and its eventual participation in cellulose synthase complex assembly.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Domínio Catalítico/genética , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Mutação/genética , Membrana Celular/metabolismo , Celulose/metabolismo , Celulose/ultraestrutura , Proteínas Mutantes/metabolismo , Fenótipo , Plântula/crescimento & desenvolvimento
6.
J Nanobiotechnology ; 17(1): 113, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699100

RESUMO

BACKGROUND: Synergistic therapy of tumor is a promising way in curing cancer and in order to achieve effective tumor therapy with real-time drug release monitoring, dynamic cellular imaging and antitumor activity. RESULTS: In this work, a polymeric nanoparticle with Forster resonance energy transfer (FRET) effect and chemo-photodynamic properties was fabricated as the drug vehicle. An amphiphilic polymer of cyclo(RGDfCSH) (cRGD)-poly(ethylene glycol) (PEG)-Poly(L-histidine) (PH)-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por)-acting as both a photosensitizer for photodynamic therapy (PDT) and absorption of acceptor in FRET was synthesized and self-assembled into polymeric nanoparticles with epirubicin (EPI)-acting as an antitumor drug for chemotherapy and fluorescence of donor in FRET. Spherical EPI-loaded nanoparticles with the average size of 150 ± 2.4 nm was procured with negatively charged surface, pH sensitivity and high drug loading content (14.9 ± 1.5%). The cellular uptake of EPI-loaded cRGD-PEG-PH-PCL-Por was monitored in real time by the FRET effect between EPI and cRGD-PEG-PH-PCL-Por. The polymeric nanoparticles combined PDT and chemotherapy showed significant anticancer activity both in vitro (IC50 = 0.47 µg/mL) and better therapeutic efficacy than that of free EPI in vivo. CONCLUSIONS: This work provided a versatile strategy to fabricate nanoassemblies for intracellular tracking of drug release and synergistic chemo-photodynamic therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Epirubicina/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/uso terapêutico , Liberação Controlada de Fármacos , Epirubicina/farmacocinética , Epirubicina/uso terapêutico , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/administração & dosagem , Polímeros/farmacocinética , Polímeros/uso terapêutico
7.
J Am Chem Soc ; 140(24): 7674-7680, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29856215

RESUMO

Herein, we report the preparation of a multifunctional metallacage-core supramolecular gel by orthogonal metal coordination and host-guest interactions. A tetragonal prismatic cage with four appended 21-crown-7 (21C7) moieties in its pillar parts was first prepared via the metal-coordination-driven self-assembly of cis-Pt(PEt3)2(OTf)2, tetraphenylethene (TPE)-based sodium benzoate ligands and linear dipyridyl ligands. Further addition of a bisammonium linker to the cage delivered a supramolecular polymer network via the host-guest interactions between the 21C7 moieties and ammonium salts, which formed a supramolecular gel at relatively higher concentrations. Due to the incorporation of a TPE derivative as the fluorophore, the gel shows emission properties. Multiple stimuli responsiveness and good self-healing properties were also observed because of the dynamic metal coordination and host-guest interactions used to stabilize the whole network structure. Moreover, the storage and loss moduli of the gel are 10-fold those of the gel without the metallacage cores, indicating that the rigid metallacage plays a significant role in enhancing the stiffness of the gel. The studies described herein not only enrich the functionalization of fluorescent metallacages via elegant ligand design but also provide a way to prepare stimuli-responsive and self-healing supramolecular gels as robust and smart materials.


Assuntos
Complexos de Coordenação/química , Géis/química , Substâncias Macromoleculares/química , Compostos Organoplatínicos/química , Polímeros/química , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Complexos de Coordenação/síntese química , Éteres de Coroa/síntese química , Éteres de Coroa/química , Fluorescência , Géis/síntese química , Substâncias Macromoleculares/síntese química , Compostos Organoplatínicos/síntese química , Polímeros/síntese química , Reologia
8.
Macromol Rapid Commun ; 39(14): e1700828, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30117644

RESUMO

A nonconjugated, alcohol-soluble zwitterionic polymer, poly(sulfobetaine methacrylate) (denoted by PSBMA), is employed as cathode interfacial layer (CIL) in polymer solar cells (PSCs) based on PTB7-Th:PC71 BM. Compared with the control device without CIL, PSCs with PSBMA CILs show significant enhancement on the resulting performance, and the highest power conversion efficiency (PCE) of 8.27% is achieved. Under parallel conditions, PSCs with PSBMA as CIL show comparable performance than those with widely used poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-ioctylfluorene)] as CIL. The polar groups of PSBMA not only provide a solvent orthogonal solubility in the process of preparation of the devices but also lead to interfacial dipole to the electrode, which promises a better energy level alignment. In addition, PSBMA-based devices show better abilities of hole blocking. These results indicate that the zwitterionic polymer PSBMA should be a promising CIL in PSC-based narrow-bandgap polymers.


Assuntos
Polímeros/química , Energia Solar , Álcoois/química , Eletrodos , Fluorenos/química , Solventes/química , Luz Solar , Tiofenos/química
9.
Ecotoxicol Environ Saf ; 151: 266-271, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29407559

RESUMO

A field investigation on the content of heavy metals in soils and 17 kinds of dominant plants from wasteland of the downstream of a Pb-Zn mine in Northwest Guangxi Zhuang Autonomous Region was carried out. The absorption and accumulation characteristics of heavy metals between plants and soil were compared, and the candidate species for ecosystem restoration of the area were selected. The results indicated that the soils had been subjected to pollution of heavy metals in varying degrees. The concentrations of Cd, Pb, Zn were 46.5, 57.3 and 23.7 times higher than their corresponding background values, respectively. The contents of Cd, Pb and Zn in the most analyzed plants exceed the normal ranges and the phytotoxic level. C. crepidioides, S. nigrum, B. pilosa, C. Canadensis, A. conyzoides, I. denticulata and E. crusgali showed strong capability in accumulation and transport of Cd, and they could be used as good candidates for Cd- phytoextraction. Among which, Cd concentration in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Thus, C. crepidioides demonstrated the basic characteristics of a Cd-hyperaccumulator. The lower translocation ratios for Cd, Cu, Zn and Pb in P. vittata and C. chinensis make them suitable for phytostabilization in the study area.


Assuntos
Asteraceae/química , Monitoramento Ambiental , Chumbo/análise , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Zinco/análise , Biodegradação Ambiental , China , Ecossistema , Mineração , Plantas/química
10.
Langmuir ; 30(2): 501-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24377837

RESUMO

The adsorption of lysozyme is difficult to control by pH because of the relatively high isoelectric point of this protein (11.1). In this article, we demonstrate good control of lysozyme adsorption by pH in the range of 4-10 on silicon surfaces through modification with poly(2-(dimethylamino ethyl) methacrylate)-block-poly(methacrylic acid) (PDMAEMA-b-PMAA) diblock copolymer brushes. We show that the thickness of the outer PMAA block (lPMAA) is critical to the adsorption. When lPMAA was less than 10 nm, adsorption increased with increasing pH, and the difference in adsorption between high and low pH increased with lPMAA. The ratio of adsorption at pH 10 and pH 4 reached values as high as 16.4. When lPMAA was more than 10 nm, the adsorption tendency on the PDMAEMA-b-PMAA diblock copolymer brushes was similar to that on PMAA homopolymer brushes. These results indicate that the combination of PDMAEMA and PMAA gives adsorption behavior reflecting the properties of both polymers. However, if the outer PMAA block is thicker than a critical value, then the protein-resistant effect of the inner PDMAEMA block is screened.


Assuntos
Muramidase/química , Ácidos Polimetacrílicos/química , Adsorção , Concentração de Íons de Hidrogênio , Muramidase/metabolismo , Tamanho da Partícula , Propriedades de Superfície
11.
Anal Chim Acta ; 1287: 342063, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182371

RESUMO

BACKGROUD: Single oxygen (1O2), the molecular oxygen at its excited state, plays a crucial role in the photodynamic therapy (PDT) of some diseases owing to its strong oxidizing property to destroy malignant cells. Although the fluorescent probe technique has proven its powerful application abilities for detection of 1O2 in biological systems, most of the reported fluorescent probes suffered from the interference of background autofluorescence of biological samples. It is clear that the real-time and in situ, background-free fluorescent detection of 1O2 generated in live cells, especially in some organelles, is of great significance for understanding the action mechanism of PDT drugs. RESULTS: By introducing a lysosome-anchoring motif, a morpholine moiety, into a 1O2-specifically-reactive terpyridine polyacid ligand, [4'-(9-anthryl)-2,2':6',2″-terpyridine-6,6″-diyl] bis(methylenenitrilo) tetrakis (acetic acid) (ATTA), and chelating with lanthanide ions (Eu3+ or Tb3+), two lanthanide complex-based "turn-on" luminescent probes that can be used for the background-free time-gated luminescent (TGL) detection of lysosomal 1O2, Lyso-ATTA-Eu3+ and Lyso-ATTA-Tb3+, have been developed. The probes exhibit fast luminescence responses (within 2.5 min) towards 1O2 with high selectivity and sensitivity (<0.75 µM) in a wide pH range (4-11). And the excellent lysosome-localization performance of the probes allowed them to be used for the monitoring of endogenous 1O2 in lysosomes, which enabled the variability of lysosomal-1O2 concentrations induced by different photosensitizers to be successfully discriminated. Furthermore, by doping Lyso-ATTA-Eu3+ into the polyethylene glycol (PEG) hydrogel, the smart luminescent sensor film, PEG-Lyso-ATTA-Eu3+, was prepared, and successfully used for the detection of the on-site 1O2 production during the PDT process of psoriatic disease in model mice. SIGNIFICANT: Two lysosome-targetable background-free TGL probes for 1O2 were firstly reported. The developed smart luminescent sensor film could be a powerful tool for the clinical monitoring of PDT on skin diseases without using sophisticated and expensive instruments.


Assuntos
Elementos da Série dos Lantanídeos , Oxigênio Singlete , Animais , Camundongos , Luminescência , Oxigênio , Lisossomos , Materiais Biocompatíveis , Corantes Fluorescentes
12.
Materials (Basel) ; 17(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612012

RESUMO

Ni60-WC coatings with different WC contents on the bucket tooth substrates were pre- pared using laser cladding technology. Their abrasive wear properties were assessed using the dry sand rubber wheel test system. The substrate and the hard-facing layer were tested for comparison. The results showed that the hardness of the Ni60-WC coatings increased with the increase in WC content. The wear resistance of the bucket tooth substrate was greatly improved by hard-facing and laser cladding Ni60-WC coatings. The wear rate of the hard-facing layer was reduced to 1/6 of that of the tooth substrate. The wear rate of the laser cladding coatings with 20-40 wt.% WC was similar to that of the hard-facing layer. It is worth mentioning that the wear rate of the coatings with 60-80 wt.% WC was only 1/4 of that of the hard-facing layer. Micro-cutting with surface plastic deformation was the main wear mechanism of the substrate to form narrow and deep furrows. The wear mechanism of the hard-facing layer was mainly plastic deformation with a wide groove, and the surface cracks promoted the removal of the material. The removal of the binder phase caused by micro-cutting was the main wear mechanism of the laser cladding Ni60-WC coatings. However, the hard phase of WC hinders micro-cutting and plastic deformation, which improves the wear resistance of the coating.

13.
Colloids Surf B Biointerfaces ; 243: 114140, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39111157

RESUMO

Excessive local accumulation of reactive oxygen species (ROS) in vulvovaginal candidiasis (VVC) leads to oxidative stress and aggravates inflammation. This study aimed to optimize and synthesize four ROS-sensitive polyethylene glycol (PEG)-boride polymers (PB, PCB, BPB, and BCPCB). A nanomicelle (BCPCB-K) was constructed using BCPCB-encapsulated ketoconazole (KTZ). Finally, the depolymerization principle and ROS-sensitive drug release of BCPCB-K as well as its anti-Candida albicans (CA) and therapeutic effects on mice with VVC were explored through in vitro and in vivo experiments. BCPCB-K exhibited low toxicity to mammalian cells in vitro and good biocompatibility in vivo. It also improved the dispersion and solubility of the hydrophobic drug KTZ. Furthermore, BCPCB-K simultaneously scavenged ROS and released the drug, thus facilitating the antifungal and VVC-treating effects of KTZ. Overall, the findings of this study broadened the application of ROS-sensitive materials in the drug-loading and antifungal fields and provided a strategy for VVC treatment.


Assuntos
Antifúngicos , Candida albicans , Candidíase Vulvovaginal , Cetoconazol , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Espécies Reativas de Oxigênio/metabolismo , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Cetoconazol/farmacologia , Cetoconazol/administração & dosagem , Feminino , Animais , Camundongos , Micelas , Nanopartículas/química , Humanos , Liberação Controlada de Fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Tamanho da Partícula
14.
Langmuir ; 29(4): 1122-8, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23265296

RESUMO

Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials.


Assuntos
Anti-Infecciosos/química , Fibrinogênio/química , Proteínas Imobilizadas/química , Metacrilatos/química , Muramidase/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Adsorção , Avidina/química , Biotina/química , Transporte de Elétrons , Microscopia de Força Atômica , Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/química
15.
J Environ Sci (China) ; 25 Suppl 1: S59-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25078841

RESUMO

This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved.


Assuntos
Temperatura Alta , Compostos de Boro/química , Elementos Químicos , Óxido de Magnésio/química , Microscopia Eletrônica de Varredura , Gases em Plasma/química , Aço Inoxidável/química , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
16.
Langmuir ; 28(25): 9451-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22621226

RESUMO

Well-controlled polymerization of N-vinylpyrrolidone (NVP) on Au surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP) was carried out at room temperature by a silanization method. Initial attempts to graft poly(N-vinylpyrrolidone) (PVP) layers from initiators attached to alkanethiol monolayers yielded PVP films with thicknesses less than 5 nm. The combined factors of the difficulty in the controllable polymerization of NVP and the instability of alkanethiol monolayers led to the difficulty in the controlled polymerization of NVP on Au surfaces. Therefore, the silanization method was employed to form an adhesion layer for initiator attachment. This method allowed well-defined ATRP polymerization to occur on Au surfaces. Water contact angle, X-ray photoelectron spectroscopy (XPS), and reflectance Fourier transform infrared (reflectance FTIR) spectroscopy were used to characterize the modified surfaces. The PVP-modified gold surface remained stable at 130 °C for 3 h, showing excellent thermal stability. Thus, postfunctionalization of polymer brushes at elevated temperatures is made possible. The silanization method was also applied to modify SPR chips and showed potential applications in biosensors and biochips.


Assuntos
Ouro/química , Polimerização , Povidona/química , Povidona/síntese química , Temperatura , Adsorção , Técnicas de Química Sintética , Proteínas/química , Silanos/química , Compostos de Sulfidrila/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Água/química
17.
Langmuir ; 28(49): 17011-8, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23157582

RESUMO

It is well known that adsorbed proteins play a major role in cell adhesion. However, it has also been reported that cells can adhere to a protein-resistant surface. In this work, the behavior of L02 and BEL-7402 cells on a protein-resistant, 3D topographical surface was investigated. The topographical gold nanoparticle layer (GNPL) surfaces were prepared by chemical gold plating, and the topography was described by roughness parameters acquired from a multiscale analysis. Both smooth Au and GNPL surfaces were modified with POEGMA polymer brushes using surface-initiated ATRP. The dry and hydrated thicknesses of POEGMA brushes on both smooth and rough surfaces were measured by AFM using a nanoindentation method. Protein adsorption experiments using (125)I radiolabeling revealed similarly low levels of protein adsorption on smooth and GNPL surfaces modified with POEGMA, thus allowing an investigation of the effects of topography on cell behavior under conditions of minimal protein adsorption. The roles of VN and FN adsorption in both L02 cells and BEL-7402 cells adhesion were investigated using cell culturing with and without a serum supplement. It was found that initial cell adhesion occurred via proteins adsorbed from the cell culture medium, whereas subsequent durable cell adhesion could be attributed to the topographical structure of the surface. Although cell spreading on protein-resistant surfaces was constrained because of the lack of adsorbed proteins, we found that cells adherent to topographical surfaces were more firmly attached and thus were more durable compared to those on smooth surfaces. In general, however, we conclude that topography is more important for cell adhesion on a protein-resistant surface.


Assuntos
Materiais Revestidos Biocompatíveis/química , Ouro/química , Hepatócitos/efeitos dos fármacos , Nanopartículas Metálicas/química , Metacrilatos/química , Polietilenoglicóis/química , Albumina Sérica/química , Adsorção , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/farmacologia , Hepatócitos/citologia , Humanos , Radioisótopos do Iodo , Nanopartículas Metálicas/ultraestrutura , Metacrilatos/farmacologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Polietilenoglicóis/farmacologia , Ácidos Polimetacrílicos , Propriedades de Superfície
18.
Curr Pharm Des ; 28(1): 46-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34587880

RESUMO

BACKGROUND: In recent decades, the prevalence of asthma has substantially increased worldwide. Advances in phytochemistry and phytopharmacology have clarified the active ingredients and biological activities of medicinal plant products for treating asthma, and the role of herbal therapies in asthma treatment has become increasingly evident. However, most plant extracts have low solubility and poor stability of bioactive components, resulting in low bioavailability and loss of efficacy. Owing to these shortcomings, the clinical use of many herbal extracts is limited. OBJECTIVE: To summarise and analyse the characteristics of herbal nanoformulations and their application in asthma treatment. The objective of this review article is to address the emerging trends of herbal nanoformulations for an effective treatment of asthma. METHODS: Various research and review articles from reputed international journals were referred to and compiled. RESULTS: The nano-sized herbal formulations improve the solubility and bioavailability of herbal medicines and contribute to the sustained release of drugs, thus, increasing the therapeutic applications of herbal extracts. The review present different types of herbal nanoformulations, including micelles, nanoparticles, solid lipid nanoparticles, lipid-based liquid crystalline nanoparticles and nanoemulsions, which are potential nanodrugs for asthma treatment. CONCLUSIONS: Herbal nanoformulations have shown great prospects for the treatment of asthma in recent years. More safety and toxicity data are still needed to promote their development and application.


Assuntos
Asma , Nanopartículas , Asma/tratamento farmacológico , Humanos , Lipossomos , Fitoterapia
19.
Front Neurol ; 13: 866183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547363

RESUMO

Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a rare and disabling syndrome characterized by painful spasms, myoclonic jerks, hyperekplexia, brainstem signs, and dysautonomia, which is considered to be a severe form of stiff person spectrum disorder (SPSD) and is mostly associated with glycine receptor antibodies. The PERM has an acute or subacute course, with complex and varied initial symptoms mainly manifest as stiffness and pain. The authors present the case of a male patient admitted for intractable stiffness and paroxysmal myoclonus of the lower extremities preceded by a 5-day history of facial weakness. After admission, his symptoms deteriorated rapidly. He developed progressive generalized hypertonia and painful spasms, which quickly spread to the upper extremities, and he suffered frequent paroxysmal myoclonus. Serum and cerebrospinal fluid (CSF) were tested by a cell-based assay, and both were positive for glycine receptor antibodies (GlyR-Abs). The patient developed complications, such as crushed teeth, lumbar vertebral compression fractures, and psoas major muscle abscess, during rapid disease progression, although he responded well after being treated with intravenous methylprednisolone and immunoglobulin. This report of PERM, initiated as facial palsy followed by acute progression, helps to expand the clinical spectrum of this rare autoimmune disorder and raise awareness of the prevention of complications.

20.
Chemosphere ; 308(Pt 1): 136309, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064021

RESUMO

In recent years, the break of COVID-19 makes the large use of disposable products, which causes the removal of microplastics become an imperative problem. Electrocoagulation is one of the effective removal technologies, but there is hardly research concentrating on the effect of substrate in the actual water on the microplastics removal with electrocoagulation. As an important role of water bodies, dissolved organic matter (DOM) has a vital and inevitable effect on the efficiency of electrocoagulation. In this study, the effect of DOM in tailwater on microplastics during electrocoagulation is elucidated by comparing the electrocoagulation treatment results between simulated wastewater and tailwater, using parallel factor analysis (PARAFAC), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectrometer (FTIR) and zeta potential analyzer. Three kinds of microplastic particles (i.e. polypropylene, polyethylene, and polymethyl methacrylate) were added into each of the two kinds of wastewaters to form six electrocoagulation systems. Results show that DOM in tailwater promotes the production of flocs and free radicals during electrocoagulation process. Fe2+ and Fe3+ are adsorbed on the surface of DOM molecules and combined with •OH form flocs. Although DOM accelerates the production of free radicals and thus promotes the aging of microplastics, flocs with DOM as crystal nucleus can prevent toxic substances and small-sized microplastics from leaching into water again. Therefore, electrocoagulation is preferred to removal microplastics in water with high concentration of DOM. This study provides a significant reference for microplastics removal by electrocoagulation in actual water, and promote the practical application of electrocoagulation for microplastics removal in water treatment.


Assuntos
COVID-19 , Microplásticos , Matéria Orgânica Dissolvida , Eletrocoagulação , Humanos , Plásticos , Polietileno , Polimetil Metacrilato , Polipropilenos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA