Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 15: 95, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27260327

RESUMO

BACKGROUND: Lignocellulosic raw materials have extensively been examined for the production of bio-based fuels, chemicals, and polymers using microbial platforms. Since xylose is one of the major components of the hydrolyzed lignocelluloses, it is being considered a promising substrate in lignocelluloses based fermentation process. Ralstonia eutropha, one of the most powerful and natural producers of polyhydroxyalkanoates (PHAs), has extensively been examined for the production of bio-based chemicals, fuels, and polymers. However, to the best of our knowledge, lignocellulosic feedstock has not been employed for R. eutropha probably due to its narrow spectrum of substrate utilization. Thus, R. eutropha engineered to utilize xylose should be useful in the development of microbial process for bio-based products from lignocellulosic feedstock. RESULTS: Recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes encoding xylose isomerase and xylulokinase respectively, was constructed and examined for the synthesis of poly(3-hydroxybutyrate) [P(3HB)] using xylose as a sole carbon source. It could produce 2.31 g/L of P(3HB) with a P(3HB) content of 30.95 wt% when it was cultured in a nitrogen limited chemically defined medium containing 20.18 g/L of xylose in a batch fermentation. Also, recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes produced 5.71 g/L of P(3HB) with a P(3HB) content of 78.11 wt% from a mixture of 10.05 g/L of glucose and 10.91 g/L of xylose in the same culture condition. The P(3HB) concentration and content could be increased to 8.79 g/L and 88.69 wt%, respectively, when it was cultured in the medium containing 16.74 g/L of glucose and 6.15 g/L of xylose. Further examination of recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes by fed-batch fermentation resulted in the production of 33.70 g/L of P(3HB) in 108 h with a P(3HB) content of 79.02 wt%. The concentration of xylose could be maintained as high as 6 g/L, which is similar to the initial concentration of xylose during the fed-batch fermentation suggesting that xylose consumption is not inhibited during fermentation. Finally, recombinant R. eutorpha NCIMB11599 expressing the E. coli xylAB gene was examined for the production of P(3HB) from the hydrolysate solution of sunflower stalk. The hydrolysate solution of sunflower stalk was prepared as a model lignocellulosic biomass, which contains 78.8 g/L of glucose, 26.9 g/L of xylose, and small amount of 4.8 g/L of galactose and mannose. When recombinant R. eutropha NCIMB11599 expressing the E. coli xylAB genes was cultured in a nitrogen limited chemically defined medium containing 23.1 g/L of hydrolysate solution of sunflower stalk, which corresponds to 16.8 g/L of glucose and 5.9 g/L of xylose, it completely consumed glucose and xylose in the sunflower stalk based medium resulting in the production of 7.86 g/L of P(3HB) with a P(3HB) content of 72.53 wt%. CONCLUSIONS: Ralstonia eutropha was successfully engineered to utilize xylose as a sole carbon source as well as to co-utilize it in the presence of glucose for the synthesis of P(3HB). In addition, R. eutropha engineered to utilized xylose could synthesize P(3HB) from the sunflower stalk hydrolysate solution containing glucose and xylose as major sugars, which suggests that xylose utilizing R. eutropha developed in this study should be useful for development of lignocellulose based microbial processes.


Assuntos
Cupriavidus necator/metabolismo , Helianthus/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Xilose/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Cupriavidus necator/genética , Cupriavidus necator/crescimento & desenvolvimento , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxibutiratos/análise , Hidroxibutiratos/química , Engenharia Metabólica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Poliésteres/análise , Poliésteres/química
2.
Biotechnol Lett ; 35(10): 1631-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23743954

RESUMO

We have previously analyzed the proteome of recombinant Escherichia coli producing poly(3-hydroxybutyrate) [P(3HB)] and revealed that the expression level of several enzymes in central metabolism are proportional to the amount of P(3HB) accumulated in the cells. Based on these results, the amplification effects of triosephosphate isomerase (TpiA) and fructose-bisphosphate aldolase (FbaA) on P(3HB) synthesis were examined in recombinant E. coli W3110, XL1-Blue, and W lacI mutant strains using glucose, sucrose and xylose as carbon sources. Amplification of TpiA and FbaA significantly increased the P(3HB) contents and concentrations in the three E. coli strains. TpiA amplification in E. coli XL1-Blue lacI increased P(3HB) from 0.4 to 1.6 to g/l from glucose. Thus amplification of glycolytic pathway enzymes is a good strategy for efficient production of P(3HB) by allowing increased glycolytic pathway flux to make more acetyl-CoA available for P(3HB) biosynthesis.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Engenharia Metabólica , Poliésteres/metabolismo , Proteoma/análise , Escherichia coli/química , Proteínas de Escherichia coli/análise , Expressão Gênica , Redes e Vias Metabólicas/genética
3.
Bioprocess Biosyst Eng ; 36(7): 885-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23010721

RESUMO

In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD600 of 2-10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD600 of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al2O3 as catalyst in toluene with the yield of 96 %.


Assuntos
Escherichia coli/metabolismo , Nylons/metabolismo , Recombinação Genética , Ácido gama-Aminobutírico/metabolismo , Sequência de Bases , Primers do DNA , Escherichia coli/genética , Glutamato Descarboxilase/metabolismo
4.
Bioresour Technol ; 352: 127106, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378283

RESUMO

Lignin valorization depends on microbial upcycling of various aromatic compounds in the form of a complex mixture, including p-coumaric acid and ferulic acid. In this study, an engineered Pseudomonas putida strain utilizing lignin-derived monomeric compounds via biological funneling was developed to produce 2-pyrone-4,6-dicarboxylic acid (PDC), which has been considered a promising building block for bioplastics. The biosynthetic pathway for PDC production was established by introducing the heterologous ligABC genes under the promoter Ptac in a strain lacking pcaGH genes to accumulate a precursor of PDC, i.e., protocatechuic acid. Based on the culture optimization, fed-batch fermentation of the final strain resulted in 22.7 g/L PDC with a molar yield of 1.0 mol/mol and productivity of 0.21 g/L/h. Subsequent purification of PDC at high purity was successfully implemented, which was consequently applied for the novel polyester.


Assuntos
Pseudomonas putida , Ácidos Dicarboxílicos/metabolismo , Lignina/metabolismo , Poliésteres/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Pironas
5.
Biotechnol J ; 9(10): 1322-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25124937

RESUMO

L-Lysine is a potential feedstock for the production of bio-based precursors for engineering plastics. In this study, we developed a microbial process for high-level conversion of L-lysine into 5-aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta-aminovaleramidase (DavA) and lysine 2-monooxygenase (DavB) was grown to high density in fed-batch culture and used as a whole cell catalyst. High-density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600 ) of 30, yielded 36.51 g/L 5AVA from 60 g/L L-lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L-lysine in 24 h. 5AVA production was further improved by doubling the L-lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L-lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ϵ-caprolactam and δ-valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio-nylon production processes.


Assuntos
Aminoácidos Neutros/metabolismo , Biotecnologia/métodos , Lisina/metabolismo , Nylons/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminoácidos Neutros/análise , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina/análise , Nylons/química , Polimerização , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Biomacromolecules ; 5(1): 1-4, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14715000

RESUMO

Horseradish peroxidase-catalyzed polymerization of cardanol in aqueous organic solvent was investigated in the presence of a redox mediator. Cardanol is a phenol derivative from a renewable resource mainly having a C15 unsaturated hydrocarbon chain with mostly 1-3 double bonds at a meta position. Unlike soybean peroxidase (SBP), it has been shown that horseradish peroxidase (HRP) is not able to perform oxidative polymerization of phenol derivatives having a bulky meta substituent such as cardanol. For the first time, redox mediators have been applied to enable horseradish peroxidase to polymerize cardanol. Veratryl alcohol, N-ethyl phenothiazine, and phenothiazine-10-propionic acid were tested as a mediator. It is surprising that the horseradish peroxidase-catalyzed polymerization of cardanol took place in the presence of N-ethyl phenothiazine or phenothiazine-10-propionic acid. However, veratryl alcohol showed no effect. FT-IR and GPC analysis of the product revealed that the structure and properties of polycardanol formed by HRP with a mediator were similar to those by SBP. This is the first work to apply a redox mediator to enzyme-catalyzed oxidative polymerization. Our new finding that oxidative polymerization of a poor substrate, which the enzyme is not active with, can take place in the presence of an appropriate mediator will present more opportunities for the application of enzyme-catalyzed polymerization.


Assuntos
Fenóis/química , Polímeros/síntese química , Catálise , Peroxidase do Rábano Silvestre , Oxirredução , Extratos Vegetais
7.
Biotechnol Lett ; 25(18): 1521-4, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14571976

RESUMO

Soybean peroxidase (20 mg) catalyzed the oxidative polymerization of cardanol in 2-propanol/phospate buffer solution (25 ml, 1:1 v/v) and yielded 62% polycardanol over 6 h. Cobalt naphthenate (0.5% w/w) catalyzed the crosslinking of polycardanol and the final hardness of crosslinked polycardanol film exceeded 9 H scale as pencil scratch hardness, which shows a high potential as a commercial coating material. In addition, it showed an excellent anti-biofouling activity to Pseudomonas fluorescens compared to other polymeric materials such as polypropylene.


Assuntos
Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/síntese química , Glycine max/química , Peroxidase/química , Fenóis/química , Polímeros/síntese química , Pseudomonas fluorescens/fisiologia , Pseudomonas fluorescens/ultraestrutura , Aderência Bacteriana/fisiologia , Materiais Revestidos Biocompatíveis/química , Ativação Enzimática , Estudos de Viabilidade , Teste de Materiais , Oxirredução , Fenóis/síntese química , Polímeros/química , Glycine max/enzimologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA