Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 227: 115754, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966998

RESUMO

Microbiologically influenced corrosion (MIC) caused by biofilm is a serious problem in many industries. D-amino acids could be a potential strategy to enhance traditional corrosion inhibitors due to their roles in biofilm reduction. However, the synergistic mechanism of D-amino acids and inhibitors remains unknown. In this study, D-Phenylalanine (D-Phe) and 1-hydroxyethane-1,1-diphosphonic acid (HEDP) were selected as the typical D-amino acid and corrosion inhibitor to evaluate their effect on the corrosion caused by Desulfovibrio vulgaris. The combination of HEDP and D-Phe obviously slowed down the corrosion process by 32.25%, decreased the corrosion pit depth and retarded cathodic reaction. SEM and CLSM analysis indicated that D-Phe reduced the content of extracellular protein and thus inhibited the biofilm formation. The molecular mechanism of D-Phe and HEDP on corrosion inhibition was further explored via transcriptome. The combination of HEDP and D-Phe down-regulated the gene expression of peptidoglycan, flagellum, electron transfer, ferredoxin and quorum sensing (QS) molecules, leading to less peptidoglycan synthesis, weaker electron transfer and stronger QS factor inhibition. This work provides a new strategy for improving traditional corrosion inhibitors, retarding MIC and mitigating subsequent water eutrophication.


Assuntos
Ácido Etidrônico , Fenilalanina , Ácido Etidrônico/farmacologia , Fenilalanina/farmacologia , Corrosão , Peptidoglicano/farmacologia , Biofilmes , Aminoácidos/farmacologia , Aço/química , Aço/farmacologia
2.
Ecotoxicol Environ Saf ; 252: 114646, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791501

RESUMO

Mitophagy has distinct functions, which can lead to either protection or damage of tissues. Though current evidence indicated that NaF triggers mitophagy, the role and regulation of mitophagy in sodium fluoride (NaF)-induced liver injury still remain unclear. Therefore, we exployed the cell and mouse models and confirmed that NaF treatment activates mitophagy. Knocking down PTEN-induced putative kinase protein 1 (PINK1) expression attenuated mitophagy and increased the degree of mitochondrial impairment, oxidative stress, and apoptosis in NaF-treated HepG2 cells. In vivo experiments indicated that PINK1 deficiency weakened NaF-induced mitophagy. Moreover, PINK1-deficient mices aggravated NaF-induced hepatic mitochondrial injury, oxidative stress, and inflammation in livers, evidenced by the increased number of abnormal mitochondria, decreased adenosine triphosphate (ATP) and glutathione (GSH) levels, elevated reactive oxygen species (ROS) and malondialdehyde (MDA) content, enhanced hepatic macrophage infiltration and inflammatory cytokine levels. Notably, NaF exposure activated Nrf2 signaling both in vitro and in vivo. Nrf2 siRNA transfection blocked the upregulation of PINK1 expression and the induction of mitophagy in NaF-treated HepG2 cells. Also, ML385 (Nrf2 inhibitor) partially blocked the upregulation of PINK1 expression caused by NaF in mice livers. To sum up, the present study provided the demonstration that Nrf2/PINK1-mediated mitophagy activation offers a hepatoprotective effect by inhibiting NaF-induced mitochondrial dysfunction, oxidative stress, and inflammation.


Assuntos
Mitofagia , Fluoreto de Sódio , Camundongos , Animais , Fluoreto de Sódio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fígado/metabolismo , Glutationa/metabolismo
3.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616998

RESUMO

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Assuntos
Lipídeos , Nanopartículas , Animais , Difosfonatos/farmacologia , Lipossomos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
4.
Soft Matter ; 18(40): 7859-7865, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200686

RESUMO

Arthritis is a disease that seriously affects the quality of human life, which is partly caused by the reduction of joint lubrication performance. Thus, for the treatment of arthritis, how to improve the lubrication performance of joints is important. The lamellar liquid crystals (LLCs) systems have the potential to be used as joint lubrication due to their double-layer structure and good biocompatibility, however, the LLCs system alone could not provide a satisfactory lubrication effect. Herein, this work synthesized hydroxyapatite (HAP) in situ inside Tween 85/Tween 80/H2O LLCs to construct a biocompatible HAP/Tween 85/Tween 80/H2O LLCs (HAP/LLCs) lubrication system with both sustained drug release properties and anti-wear properties. HAP is the main component of bone with good stability and bioactivity. The LLCs have good lubricating and drug-carrying properties. The impact of HAP on the structure and lubrication properties of LLCs, the mechanism of friction, and the anti-wear reduction of HAP/LLCs were investigated. Moreover, the drug release behavior of the ibuprofen-loaded HAP/LLCs during the friction process was also studied. The results indicated that the addition of HAP could improve the lubricity performance of LLCs. The cumulative drug releasing increased with the friction frequency and was less affected by the load. The related studies provided the theoretical basis for HAP/LLCs for joint lubrication and synergistic therapy.


Assuntos
Artrite , Cristais Líquidos , Humanos , Lubrificação , Polissorbatos , Durapatita , Ibuprofeno , Fricção
5.
Ecotoxicol Environ Saf ; 247: 114218, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279636

RESUMO

Microplastics (MPs) in natural environments undergo complex aging processes, changing their interactions with coexisting antibiotics, and posing unpredictable ecological risks. However, the joint toxicity of aged MPs (aMPs) and antibiotics to bacteria, especially at the molecular level, is unclear. In this study, non-thermal plasma technology was used to simultaneously simulate various radical oxidation and physical reactions that occur naturally in the environment, breaking the limitation of simple aging process in laboratory aging technologies. After aging, we investigated the altered properties of aMPs, their interactions with ciprofloxacin (CIP), and the molecular responses of E. coli exposed to pristine MPs (13.5 mg/L), aMPs (13.5 mg/L), and CIP (2 µg/L) individually or simultaneously. aMPs bound far more CIP to their surfaces than pristine MPs, especially in freshwater ecosystems. Notably, the growth of E. coli exposed to aMPs alone was inhibited, whereas pristine MPs exposure didn't affect the growth of E. coli. Moreover, the most differentially expressed genes in E. coli were induced by the coexposure of aMPs and CIP. Although E. coli depended on chemotaxis to improve its flagellar rotation and escaped the stress of pollutants, the coexposure of aMPs and CIP still caused cell membrane damage, oxidative stress, obstruction of DNA replication, and osmotic imbalance in E. coli. This study filled the knowledge gap between the toxicity of aMPs and pristine MPs coexisting with antibiotics at the transcription level, helping in the accurate assessment of the potential risks of MPs to the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Ciprofloxacina/toxicidade , Plásticos , Escherichia coli/genética , Escherichia coli/metabolismo , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Antibacterianos/toxicidade
6.
Int J Mol Sci ; 20(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691178

RESUMO

Tartary buckwheat (Fagopyrum tataricum) is considered a profitable crop that possesses medicinal properties, because of its flavonoid compounds. However, the dehulling issue is becoming the bottleneck for consumption of Tartary buckwheat seed. In this study, we investigated the relation between dehulling efficiency and content of lignin and cellulose in the seed hull. Moreover, the untargeted metabolomics analysis, including partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA), were performed to examine the pattern of metabolic changes in the hull of Tartary buckwheat seeds, XQ 1 and MQ 1, during seed development using gas chromatography mass spectrometry (GC-MS). In mature seed hull the accumulation of highest lignin and lowest cellulose were observed in the hull of MQ 1 seed, a dehulling-friendly variety with highest dehulling efficiency (93%), than that in other dehulling recalcitrant varieties, such as XQ 1 with a range of dehulling efficiency from 2% to 6%. During seed development, the total content of lignin and cellulose increased. MQ 1 and XQ 1 displayed a similar trend in the change of lignin and cellulose that the content was decreased in lignin and increased in cellulose. PCA result showed the metabolic differentiations between MQ 1 and XQ 1 during seed development. The results of our study suggest the compensatory regulation of lignin and cellulose deposition in the hull of mature and developing seed, and deviation of MQ 1 from the ratio of lignin to cellulose of other dehulling recalcitrant varieties may have been a contributing factor that resulted in the dehulling differentia.


Assuntos
Celulose/biossíntese , Fagopyrum/crescimento & desenvolvimento , Lignina/biossíntese , Fagopyrum/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Análise de Componente Principal , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
7.
BMC Public Health ; 14: 358, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24731248

RESUMO

BACKGROUND: There have been large-scale outbreaks of hand, foot and mouth disease (HFMD) in Mainland China over the last decade. These events varied greatly across the country. It is necessary to identify the spatial risk factors and spatial distribution patterns of HFMD for public health control and prevention. Climate risk factors associated with HFMD occurrence have been recognized. However, few studies discussed the socio-economic determinants of HFMD risk at a space scale. METHODS: HFMD records in Mainland China in May 2008 were collected. Both climate and socio-economic factors were selected as potential risk exposures of HFMD. Odds ratio (OR) was used to identify the spatial risk factors. A spatial autologistic regression model was employed to get OR values of each exposures and model the spatial distribution patterns of HFMD risk. RESULTS: Results showed that both climate and socio-economic variables were spatial risk factors for HFMD transmission in Mainland China. The statistically significant risk factors are monthly average precipitation (OR = 1.4354), monthly average temperature (OR = 1.379), monthly average wind speed (OR = 1.186), the number of industrial enterprises above designated size (OR = 17.699), the population density (OR = 1.953), and the proportion of student population (OR = 1.286). The spatial autologistic regression model has a good goodness of fit (ROC = 0.817) and prediction accuracy (Correct ratio = 78.45%) of HFMD occurrence. The autologistic regression model also reduces the contribution of the residual term in the ordinary logistic regression model significantly, from 17.25 to 1.25 for the odds ratio. Based on the prediction results of the spatial model, we obtained a map of the probability of HFMD occurrence that shows the spatial distribution pattern and local epidemic risk over Mainland China. CONCLUSIONS: The autologistic regression model was used to identify spatial risk factors and model spatial risk patterns of HFMD. HFMD occurrences were found to be spatially heterogeneous over the Mainland China, which is related to both the climate and socio-economic variables. The combination of socio-economic and climate exposures can explain the HFMD occurrences more comprehensively and objectively than those with only climate exposures. The modeled probability of HFMD occurrence at the county level reveals not only the spatial trends, but also the local details of epidemic risk, even in the regions where there were no HFMD case records.


Assuntos
Clima , Mapeamento Geográfico , Doença de Mão, Pé e Boca/etiologia , Densidade Demográfica , Tempo (Meteorologia) , China/epidemiologia , Surtos de Doenças , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Indústrias , Razão de Chances , Saúde Pública , Análise de Regressão , Fatores de Risco , Fatores Socioeconômicos , Estudantes
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(2): 212-7, 2014 03.
Artigo em Zh | MEDLINE | ID: mdl-24782380

RESUMO

OBJECTIVE: To investigate the epidemic characteristics of hand-foot-and-mouth disease (HFMD) in children and exposed population in Hangzhou city. METHODS: The throat swab or stool samples from children with HFMD admitted in Hangzhou Children's Hospital were collected. The HFMD pathogens were detected by real-time fluorescent quantitative PCR. The distribution of different HFMD pathogens in HFMD patients was subsequently determined. Human enteric virus type-71 (HEV71) in stool samples from subjects, who had close or general contact to 54 severe HFMD children with positive HEV71, was detected, and these contact persons were followed-up for one month. The diversity of predominant pathogens of HFMD in the area during 2011-2013 was investigated. RESULTS: In 641 HFMD children, the male/female ratio was 1.4:1 and 80.3% was 1-3 years old. HEV71 was detected in 24.3% HFMD children (156/641), while coxsackievirus group-A type-16 (CVA16) and other enteroviruses were detected in 4.7% (30/641) and 71.0% (455/641) of the cases, respectively. 75.6% (118/156) of HEV71-infected cases were diagnosed as severe HFMD cases, while those for CVA16-infected and other HFMD viruses-infected were 13.3% (4/30) and 6.2% (28/455) respectively (Χ(2)=43.28, P<0.05). HEV71 was the predominant HFMD pathogens during 2011-2012, while the predominant HFMD pathogens in 2013 were the other HFMD viruses. In the 54 close contact persons or 54 general contact persons, 9 or 10 persons were detectable for HEV71, but no clinical symptoms of HFMD were presented. CONCLUSION: There are no marked changes of epidemic seasons, favorable age and gender ratio of HFMD in Hangzhou area in 2013. The infection of HEV71 tends to cause the severe HFMD but the other enteroviruses have substituted HEV71 as the predominant pathogens of HFMD.


Assuntos
Doença de Mão, Pé e Boca/epidemiologia , Adolescente , Criança , Pré-Escolar , China/epidemiologia , Enterovirus Humano A/isolamento & purificação , Feminino , Humanos , Lactente , Masculino
9.
APL Bioeng ; 8(1): 011503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486824

RESUMO

All organisms on Earth live in the weak but ubiquitous geomagnetic field. Human beings are also exposed to magnetic fields generated by multiple sources, ranging from permanent magnets to magnetic resonance imaging (MRI) in hospitals. It has been shown that different magnetic fields can generate various effects on different tissues and cells. Among them, stem cells appear to be one of the most sensitive cell types to magnetic fields, which are the fundamental units of regenerative therapies. In this review, we focus on the bioeffects of static magnetic fields (SMFs), which are related to regenerative medicine. Most reports in the literature focus on the influence of SMF on bone regeneration, wound healing, and stem cell production. Multiple aspects of the cellular events, including gene expression, cell signaling pathways, reactive oxygen species, inflammation, and cytoskeleton, have been shown to be affected by SMFs. Although no consensus yet, current evidence indicates that moderate and high SMFs could serve as a promising physical tool to promote bone regeneration, wound healing, neural differentiation, and dental regeneration. All in vivo studies of SMFs on bone regeneration and wound healing have shown beneficial effects, which unravel the great potential of SMFs in these aspects. More mechanistic studies, magnetic field parameter optimization, and clinical investigations on human bodies will be imperative for the successful clinical applications of SMFs in regenerative medicine.

10.
Bioresour Technol ; 393: 129953, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37914053

RESUMO

The biochemical methane potential test is a standard method to determine the biodegradability of lignocellulosic wastes (LWs) during anaerobic digestion (AD) with disadvantages of long experiment duration and high operating expense. This paper developed a machine learning model to predict the cumulative methane yield (CMY) using the data of 157 LWs regarding physicochemical characteristics, digestion condition and methane yield, with the coefficient of determination equal to 0.869. Model interpretability analyses underscored lignin content, organic loading, and nitrogen content as pivotal attributes for CMY prediction. For the feedstocks with a cellulose content exceeding about 50%, the CMY in the early AD stage would be relatively lower than those with low cellulose content, but prolonging digestion time could promote methane production. Besides, lignin content in feedstock surpassing 15% would significantly inhibit methane production. This work contributes to valuable guidance for feedstock selection and operation optimization for AD plants.


Assuntos
Celulose , Lignina , Lignina/química , Anaerobiose , Biomassa , Metano , Biocombustíveis
11.
Waste Manag ; 187: 235-243, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068824

RESUMO

Chemical pretreatment is a common method to enhance the cumulative methane yield (CMY) of lignocellulosic waste (LW) but its effectiveness is subject to various factors, and accurate estimation of methane production of pretreated LW remains a challenge. Here, based on 254 LW samples, a machine learning (ML) model to predict the methane production performance of pretreated feedstock was constructed using two automated ML platforms (tree-based pipeline optimization tool and neural network intelligence). Furthermore, the interactive effects of pretreatment conditions, feedstock properties, and digestion conditions on methane production of pretreated LW were studied through model interpretability analysis. The optimal ML model performed well on the validation set, and the digestion time, pretreatment agent, and lignin content (LC) were found to be key factors affecting the methane production of pretreated LW. If the LC in the raw LW was lower than 15%, the maximum CMY might be achieved using the NaOH, KOH, and alkaline hydrogen peroxide (AHP) with concentrations of 3.8%, 4.4%, and 4.5%, respectively. On the other hand, if LC was higher than 15%, only high concentrations of AHP exceeding 4% could significantly increase methane production. This study provides valuable guidance for optimizing pretreatment process, comparing different chemical pretreatment approaches, and regulating the operation of large-scale biogas plants.


Assuntos
Lignina , Aprendizado de Máquina , Metano , Metano/análise , Biocombustíveis/análise , Eliminação de Resíduos/métodos
12.
Sci Total Environ ; 935: 173017, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38719054

RESUMO

Carriers have been extensively employed to enhance nitrification performance during low-strength wastewater treatment by retaining slow-growing ammonia oxidizing microorganisms (AOMs). Still, there is a dearth of systematic understanding of biofilm properties and microbial community structure formed on different carriers. In this study, hydrophilic polyurethane foam (PUF) carriers were prepared and compared with five widely used commercial carriers, namely Kaldness 3, Biochip, activated carbon, volcanic rock, and zeolite. The results indicated that the biofilms formed on carriers enhanced microbial ammonia oxidation activity. Additionally, the biofilm developed on the PUF demonstrated the most superior performance among all selected carriers, not only exhibiting the highest abundant and the most active AOMs, with amoA gene abundance of 1.41 × 1013 copies/m3 and specific ammonia oxidation rate of 9.84 g NH4+-N/(m3 × h), but also possessing a compact structure, with 3.41 kg VSS/m3 and 46.83 mg extracellular polymeric substances/g VSS. The high-throughput sequencing analysis revealed that the comammox (CMX) Nitrospira dominated on biofilm due to the intrinsically low apparent half-saturation constant for substrate. A unique ecological community structure was established on PUF, characterized by low species diversity and high homogeneity in alignment with community characteristics of CMX. The biofilms on PUF contributed to the proliferation of CMX Nitrospira dominated by Nitrospira nitrosa, achieving the highest proportion among colonial three AOMs at 86.58 %. The appropriate average pore size, superior hydrophilicity, and large specific surface area of PUF carriers provided a robust foundation for the exceptional ammonia oxidation performance of the formed biofilms.


Assuntos
Amônia , Biofilmes , Oxirredução , Poliuretanos , Eliminação de Resíduos Líquidos , Águas Residuárias , Amônia/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia , Interações Hidrofóbicas e Hidrofílicas , Nitrificação
13.
Biomed Chromatogr ; 27(12): 1741-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23893694

RESUMO

A novel dual-retention mechanism mixed-mode stationary phase based on silica gel functionalized with PEG 400 and succinic anhydride as the ligand was prepared and characterized by infrared spectra and elemental analysis. Because of the ligand containing PEG 400 and carboxyl function groups, it displayed hydrophobic interaction chromatography (HIC) characteristic in a high-salt-concentration mobile phase, and weak cation exchange chromatography (WCX) characteristic in a low-salt-concentration mobile phase. As a result, it can be employed to separate proteins with both WCX and HIC modes. The resolution and selectivity of the stationary phase was evaluated under both HIC and WCX modes with protein standards, and its performance was comparable to that of conventional ion-exchange chromatography and HIC columns. The results indicated that the novel dual-retention mechanism column, in many cases, could replace two individual WCX and HIC columns as a '2D column'. In addition, the mixed retention mechanism of proteins on this '2D column' was investigated with stoichiometric displacement theory for retention of solute in liquid chromatography in detail in order to understand why the dual-retention mechanism column has high resolution and selectivity for protein separation under WCX and HIC modes, respectively. Based on this '2D column', a new 2DLC technology with a single column was developed. It is very important in proteome research and recombinant protein drug production to save column expense and simplify the processes in biotechnology.


Assuntos
Cromatografia por Troca Iônica/métodos , Polietilenoglicóis/química , Proteínas Recombinantes/isolamento & purificação , Anidridos Succínicos/química , Adsorção , Cromatografia Líquida/métodos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/análise , Proteínas Recombinantes/química
14.
Sci Total Environ ; 873: 162324, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813202

RESUMO

Biodegradable plastics (BPs) tend to replace conventional plastics, which increases the amount of BP waste entering the environment. The anaerobic environment exists extensively in nature, and anaerobic digestion has become a widely used technique for organic waste treatment. Many kinds of BPs have low biodegradability (BD) and biodegradation rates under anaerobic condition due to the limitation of hydrolysis, so they still have harmful environmental consequences in anaerobic environment. There is an urgent need to find an intervention method to improve the biodegradation of BPs. Therefore, this study aimed to investigate the effectiveness of alkaline pretreatment in accelerating the thermophilic anaerobic degradation of ten widely used BPs, such as poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), thermoplastic starch (TPS), poly (butylene succinate-co-butylene adipate) (PBSA), cellulose diacetate (CDA), etc. The results showed that NaOH pretreatment significantly improved the solubility of PBSA, PLA, poly (propylene carbonate) (PPC), and TPS. Except for PBAT, pretreatment with an appropriate NaOH concentration could improve the BD and degradation rate. The pretreatment also reduced the lag phase in the anaerobic degradation of BPs such as PLA, PPC, and TPS. Specifically, for CDA and PBSA, the BD increased from 4.6 % and 30.5 % to 85.2 % and 88.7 %, with increments of 1752.2 % and 190.8 %, respectively. Microbial analysis indicated that NaOH pretreatment promoted the dissolution and hydrolysis of PBSA and PLA and the deacetylation of CDA, which contributed to rapid and complete degradation. This work not only provides a promising method for improving the degradation of BP waste but also lays the foundation for its large-scale application and safe disposal.


Assuntos
Plásticos Biodegradáveis , Anaerobiose , Hidróxido de Sódio , Poliésteres , Plásticos/metabolismo , Biodegradação Ambiental , Adipatos/metabolismo
15.
Chemosphere ; 311(Pt 1): 136968, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283429

RESUMO

The plastic concentration in terrestrial systems is orders of magnitude higher than that found in marine ecosystems, which has raised global concerns about their potential risk to agricultural sustainability. Previous research on the transport of nanoplastics in soil relied heavily on the qualitative prediction of the mean-field extended Derjaguin-Landau-Verwey-Overbeek theory (XDLVO), but direct and quantitative measurements of the interfacial forces between single nanoplastics and porous media are lacking. In this study, we conducted multiscale investigations ranging from column transport experiments to single particle measurements. The maximum effluent concentration (C/C0) of amino-modified nanoplastics (PS-NH2) was 0.94, whereas that of the carboxyl-modified nanoplastics (PS-COOH) was only 0.33, indicating PS-NH2 were more mobile than PS-COOH at different ionic strengths (1-50 mM) and pH values (5-9). This phenomenon was mainly attributed to the homogeneous aggregation of PS-COOH. In addition, the transport of PS-NH2 in the quartz sand column was inhibited with the increase of ionic strength and pH, and pH was the major factor governing their mobility. The transport of PS-COOH was inhibited with increasing ionic strength and decreasing pH. Hydrophilicity/hydrophobicity-mediated interactions and particle heterogeneity strongly interfered with interfacial forces, leading to the qualitative prediction of XDLVO, contrary to experimental observations. Through the combination of XDLVO and colloidal atomic force microscopy, accurate and quantitative interfacial forces can provide compelling insight into the fate of nanoparticles in the soil environment.


Assuntos
Ecossistema , Microplásticos , Porosidade , Quartzo , Areia
16.
Sci Total Environ ; 834: 155167, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421475

RESUMO

The serious environmental problem caused by traditional plastics has stimulated the popularization of biodegradable plastics (BPs). However, the rigorous prerequisite for the efficient degradation of BPs has not eliminated its potential hazard to nature. In most biosystems exists the anaerobic environment, but it is still controversial whether BPs can be degraded under such condition. Therefore, this study systematically assessed the anaerobic degradation performance of ten common BPs under mesophilic and thermophilic conditions. Results showed that four BPs were degraded evidently under mesophilic condition with the biodegradability of 57.9%-84.6%, while during thermophilic condition, five BPs showed remarkable degradation performance with the biodegradability of 53.0% to 95.7%. According to morphological and micro-structural analysis, the biodegradation of the BPs probably proceeded via bulk and/or surface erosion. Under mesophilic condition, Anaerolineales, Bacteroidales, Clostridiales, SBR1031, and Synergistales appeared to play an important role. During thermophilic condition, the hydrolysis, acidogenesis, and methanogenesis of most BPs were mainly conducted by Coprothermobacter and the archaea Methanothermobacter. This work not only provides crucial data on the anaerobic biodigestibility of BPs but also enriches the understanding of the BPs degradation mechanisms, which are of great importance for future popularization of BP products and simultaneously relieving the environmental pollution.


Assuntos
Plásticos Biodegradáveis , Microbiota , Anaerobiose , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Metano/metabolismo , Plásticos/metabolismo , Temperatura
17.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1784-1808, 2022 May 25.
Artigo em Zh | MEDLINE | ID: mdl-35611729

RESUMO

With the continuously increasing demands of plastic products in the current society, the challenge of disposing plastic waste is constantly increasing, leading to the urgent need of mitigating plastic pollution. As a consequence, much attention has been paid to biodegradable plastics due to their degradability in a bio-active environment under certain conditions. Biodegradable plastics herald vast development potentials and considerable market prospects. The degradation of numerous types of biodegradable plastics will be affected by many factors. A thorough understanding of degradation mechanisms as well as functional microbial strains and enzymes is the key to comprehensive utilization and efficient treatment and disposal of biodegradable plastics. The article summarized the types, properties, advantages and disadvantages, and main applications of common biodegradable plastics. The degradation mechanisms, functional microbial strains and enzymes, as well as the degradation degree and duration under different environmental conditions, were also summarized. This review may help better understand the degradation of biodegradable plastics wastes.


Assuntos
Plásticos Biodegradáveis , Biodegradação Ambiental
18.
J Biomater Appl ; 35(8): 947-957, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33081605

RESUMO

Docetaxel (DOX) is usually one of drugs used for breast cancer treatment. The key of targeted drug delivery therapy is to deliver effective drugs directly and safely to the tumor focus via an efficient targeting drug carrier with immunogenicity. In this study, Long-circulating targeted drug carrying microspheres (DOX-PEG-EpCAM-MNs) entrapping DOX were constructed. In addition, both cytotoxicity and magnetic resonance imaging (MRI) analyses were performed to establish a mouse model and further complete corresponding performance analysis.The results showed that the average particle size of DOX-PEG-EpCAM-MNs was 139.3 ± 1.6 nm. Morphological analysis proves that they are spherical and uniformly dispersed. The Corresponding entrapment rate and drug carrying capacity are 82.43% and 7.16% respectively. Additionally, MRI shows that they have the capability to track tumor cells within 5 days. This study established a safe and efficient breast cancer cells targeted long-circulating drug delivery system.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Molécula de Adesão da Célula Epitelial/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Meios de Contraste/farmacologia , Docetaxel/administração & dosagem , Docetaxel/química , Docetaxel/farmacologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Molécula de Adesão da Célula Epitelial/administração & dosagem , Molécula de Adesão da Célula Epitelial/farmacologia , Feminino , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Camundongos , Microesferas , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
19.
Environ Sci Process Impacts ; 23(10): 1509-1515, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669759

RESUMO

Wastewater treatment plants are suspected to be significant point sources of microplastic and nanoplastic particles (NPs) in the environment. As one of the main wastewater treatment processes, advanced oxidation processes (AOPs) may change the physicochemical properties of NPs and further affect their migration. However, limited information is known about the environmental fate of NPs after AOP treatment. In this study, polystyrene nanoparticles were treated using two representative AOPs, Fenton and persulfate treatments, and the migration of the NPs in quartz sand was investigated via column transport experiments. FTIR and XPS analysis indicated that a large number of oxygen-containing groups were generated on the NP surface after AOP treatment leading to lower hydrophobicity and a higher negative charge. Besides, the C/O ratio after Fenton and persulfate treatments was increased from 10.98 to 7.25 and 8.68. Moreover, the NPs after AOP treatment exhibited higher mobility in quartz sand in both ultrapure water and 10 mM NaCl solution. It was more obvious in 10 mM NaCl solution with breakthrough percentages of 79.73% for P-PS, 90.97% for F-PS and 95.67% for N-PS, respectively. These results could be explained by the roles of generated oxygen-containing functional groups; first, the higher negative charge enhanced the electrostatic repulsion between treated NPs and sand; second, lower hydrophobicity improved the binding with water molecules in background solution. This work is helpful in understanding the changes of nanoplastics in AOP treatment and their migration in the natural environment, which has far-reaching influence on the environmental fate and behavior of nanoplastics.


Assuntos
Nanopartículas , Poliestirenos , Plásticos , Quartzo , Areia
20.
Free Radic Biol Med ; 169: 137-148, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33857626

RESUMO

An extensive body of research has demonstrated that pulmonary toxicity induced by fluoride is related to cell apoptosis. Although induction of death receptor-initiated extrinsic apoptosis by sodium fluoride (NaF) has been reported, its mechanism of action is still not clearly defined. Herein, we found that NaF treatment induced activation of caspase-8 in BEAS-2B cells, resulting in apoptosis, which was markedly reduced by blocking caspase-8 using small interfering RNA (siRNA). In this study, we report that death receptor 5 (DR5), a major component of the extrinsic apoptotic pathway, is markedly induced upon NaF stimulation. Enhanced DR5 induction was necessary for the apoptotic effects of NaF, inasmuch as transfected BEAS-2B cells with DR5 siRNA attenuated NaF-induced caspase-8 activation in lung cells. Mechanism investigation indicated that the induction of DR5, following NaF exposure, was mediated by tumor protein 53 (p53)-dependent transcriptional activation. Notably, we demonstrated that NaF could induce a significant increase in intracellular reactive oxygen species (ROS) level derived from nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). Specifically, NOX4 knockdown inhibited NaF-induced the activation of p53/DR5 axis by reducing NOX4-derived ROS production. Further in vivo investigation demonstrated that NOX4 deficiency markedly attenuates NaF-induced lung injury, apoptosis, and ROS levels in the lung. Moreover, the expressions of p53 and DR5 were significantly reduced after NaF treatment in NOX4 knockout mice compared with the wild type mice. Taken together, our findings provide a novel insight into for the pulmonary apoptosis in response to NaF exposure.


Assuntos
Fluoreto de Sódio , Proteína Supressora de Tumor p53 , Animais , Apoptose , Pulmão/metabolismo , Camundongos , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Fluoreto de Sódio/toxicidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA