Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 10: 5771-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26396511

RESUMO

In this study, multifunctional hybrid-polymeric nanoparticles were prepared for the treatment of cultured multicellular tumor spheroids (MCTS) of the PANC-1 and MIA PaCa-2 pancreatic carcinoma cell lines. To synthesize the hybrid-polymeric nanoparticles, the poly lactic-co-glycolic acid core of the particles was loaded with Rhodamine 6G dye and the chemotherapeutic agent, Paclitaxel, was incorporated into the outer phospholipid layer. The surface of the nanoparticles was coated with gadolinium chelates for magnetic resonance imaging applications. This engineered nanoparticle formulation was found to be suitable for use in guided imaging therapy. Specifically, we investigated the size-dependent therapeutic response and the uptake of nanoparticles that were 65 nm, 85 nm, and 110 nm in size in the MCTS of the two pancreatic cancer cell lines used. After 24 hours of treatment, the MCTS of both PANC-1 and MIA PaCa-2 cell lines showed an average increase in the uptake of 18.4% for both 65 nm and 85 nm nanoparticles and 24.8% for 110 nm nanoparticles. Furthermore, the studies on therapeutic effects showed that particle size had a slight influence on the overall effectiveness of the formulation. In the MCTS of the MIA PaCa-2 cell line, 65 nm nanoparticles were found to produce the greatest therapeutic effect, whereas 12.8% of cells were apoptotic of which 11.4% of cells were apoptotic for 85 nm nanoparticles and 9.79% for 110 nm nanoparticles. Finally, the study conducted in vivo revealed the importance of nanoparticle size selection for the effective delivery of drug formulations to the tumors. In agreement with our in vitro results, excellent uptake and retention were found in the tumors of MIA PaCa-2 tumor-bearing mice treated with 110 nm nanoparticles.


Assuntos
Sistemas de Liberação de Medicamentos , Imagem Multimodal , Polímeros/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Paclitaxel/farmacologia , Neoplasias Pancreáticas/terapia , Tamanho da Partícula
2.
Adv Healthc Mater ; 2(8): 1170-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23495127

RESUMO

Individualized disease treatment is a promising branch for future medicine. In this work, we introduce an implantable microelectromechanical system (MEMS) based drug delivery device for programmable drug delivery. An in vitro study on cancer cell treatment has been conducted to demonstrate a proof-of-concept that the engineered device is suitable for individualized disease treatment. This is the first study to demonstrate that MEMS drug delivery devices can influence the outcome of cancer drug treatment through the use of individualized disease treatment regimes, where the strategy for drug dosages is tailored according to different individuals. The presented device is electrochemically actuated through a diaphragm membrane and made of polydimethylsiloxane (PDMS) for biocompatibility using simple and cost-effective microfabrication techniques. Individualized disease treatment was investigated using the in vitro programmed delivery of a chemotherapy drug, doxorubicin, to pancreatic cancer cell cultures. Cultured cell colonies of two pancreatic cancer cell lines (Panc-1 and MiaPaCa-2) were treated with three programmed schedules and monitored for 7 days. The result shows that the colony growth has been successfully inhibited for both cell lines among all the three treatment schedules. Also, the different observations between the two cell lines under different schedules reveal that MiaPaCa-2 cells are more sensitive to the drug applied. These results demonstrate that further development on the device will provide a promising novel platform for individualized disease treatment in future medicine as well as for automatic in vitro assays in drug development industry.


Assuntos
Portadores de Fármacos/química , Sistemas Microeletromecânicos/instrumentação , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Doxorrubicina/química , Doxorrubicina/toxicidade , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA