Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(12): 5362-5368, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930285

RESUMO

Protein-based biologics are highly suitable for drug development as they exhibit low toxicity and high specificity for their targets. However, for therapeutic applications, biologics must often be formulated to elevated concentrations, making insufficient solubility a critical bottleneck in the drug development pipeline. Here, we report an ultrahigh-throughput microfluidic platform for protein solubility screening. In comparison with previous methods, this microfluidic platform can make, incubate, and measure samples in a few minutes, uses just 20 µg of protein (>10-fold improvement), and yields 10,000 data points (1000-fold improvement). This allows quantitative comparison of formulation excipients, such as sodium chloride, polysorbate, histidine, arginine, and sucrose. Additionally, we can measure how solubility is affected by the combinatorial effect of multiple additives, find a suitable pH for the formulation, and measure the impact of mutations on solubility, thus enabling the screening of large libraries. By reducing material and time costs, this approach makes detailed multidimensional solubility optimization experiments possible, streamlining drug development and increasing our understanding of biotherapeutic solubility and the effects of excipients.


Assuntos
Excipientes , Microfluídica , Solubilidade , Polissorbatos , Proteínas
2.
Sci Rep ; 7(1): 15045, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118344

RESUMO

The nematode worm Caenorhabditis elegans (C. elegans) is a versatile and widely used animal model for in vivo studies of a broad range of human diseases, in particular for understanding their genetic origins and for screening drug candidates. Nevertheless, the challenges associated with the administration of native proteins to C. elegans have limited the range of applications of this animal model in protein-based drug discovery programs. Here, we describe a readily usable protocol for the transduction of native proteins in C. elegans, which is based on the encapsulation of the proteins of interest within cationic lipid vesicles, prior to their administration to worms. This procedure limits the degradation of the proteins in the guts of the animals, and promotes their adsorption into body tissues. To illustrate the efficacy of this approach we apply it to deliver an antibody designed to inhibit α-synuclein aggregation, and show that it can lead to the rescue of the disease phenotype in a C. elegans model of Parkinson's disease. As this transduction protocol is fast and inexpensive, we anticipate that it will be readily applicable to protein-based drug discovery studies that utilize C. elegans as a model organism.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Adsorção , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Absorção Intestinal , Lipídeos/química , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/farmacocinética , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Reprodutibilidade dos Testes , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA