Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 247: 112782, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660488

RESUMO

Biomodified coated-lipid vesicles were obtained using the DPPC lipid (L) and F127 copolymer linked covalently with spermine (SN), biotin (BT), and folic acid (FA), resulting in LF127-SN, LF127-BT, and LF127-FA nanoplatforms. The photosensitizer hypericin (HY) was incorporated into the nanosystem by a thin-film method and characterized by dynamic light scattering, zeta potential, encapsulation efficiency, and transmission electronic microscopy. The results provided a good level of stability for all nanoplatforms for at least 5 days as an aqueous dispersion. The in vitro serum stability showed that the HY-loaded LF127-SN has a lower tendency to form complexes with BSA protein than with its analogs. LF127-SN was the most stable HY formulation, followed by LF127-BT and LF127-FA, confirmed by the association constant (Kd) values: 600 µmol L-1, 1100 µmol L-1, 515 µmol L-1, and 378 µmol L-1 for LF127, LF127 FA, LF127-BT, and LF127-SN, respectively. The photodynamic potential of HY was accessed by cytotoxicity assays using Caco-2, B16-F10, L-929, and HaCat cells. HY-loaded LF127-SN revealed a significant increase in the selectivity compared to other nanoplatforms. HY-loaded in LF127-BT and LF127-SN showed distinct uptake and biodistribution after 2 h of intravenous application. All biomodified coated-lipids showed satisfactory metabolism within 72 h after application, without significant accumulation or residue in any vital organ. These results suggest that incorporating HY-loaded in these nanosystems may be a promising strategy for future applications, even with a small amount of binders to the coating copolymer (0.02% w/v). Furthermore, these results indicate that the LF127-SN showed remarkable superiority compared to other evaluated systems, being the most distinct for future photodynamic therapy and theranostic applications.


Assuntos
Neoplasias , Perileno , Fotoquimioterapia , Humanos , Células CACO-2 , Medicina de Precisão , Distribuição Tecidual , Fotoquimioterapia/métodos , Antracenos , Polímeros/química , Lipídeos/química , Neoplasias/tratamento farmacológico
2.
Int J Biol Macromol ; 245: 125491, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37353125

RESUMO

Erythrosine displays potential photodynamic activity against microorganisms and unhealthy cells. However, erythrosine has high hydrophilicity, negatively impacting on permeation through biological membranes. Combining biological macromolecules and thermoresponsive polymers may overcome these erythrosine-related issues, enhancing retention of topically applied drugs. The aim of this work was to investigate the performance of adhesive and thermoresponsive micellar polymeric systems, containing erythrosine in neutral (ERI) or disodium salt (ERIs) states. Optimized combinations of poloxamer 407 (polox407) and sodium carboxymethylcellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC) were used as platforms for ERI/ERIs delivery. The rheological and mechanical properties of the systems was explored. Most of the formulations were plastic, thixotropic and viscoelastic at 37 °C, with suitable gelation temperature for in situ gelation. Mechanical parameters were reduced in the presence of the photosensitizer, improving the softness index. Bioadhesion was efficient for all hydrogels, with improved parameters for mucosa in contrast to skin. Formulations composed of 17.5 % polox407 and 3 % HPMC or 1 % NaCMC with 1 % (w/w) ERI/ERIs could release the photosensitizer, reaching different layers of the skin/mucosa, ensuring enough production of cytotoxic species for photodynamic therapy. Functional micelles could boost the photodynamic activity of ERI and ERIs, improving their delivery and contact time with the cells.


Assuntos
Adesivos , Celulose , Eritrosina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Poloxâmero , Polímeros , Derivados da Hipromelose
3.
Mater Sci Eng C Mater Biol Appl ; 130: 112440, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702525

RESUMO

Erythrosine is a dye approved for medical use that has shown promising photodynamic activity, allowing for the inactivation of microorganisms and activity against malignant cells. Despite the great photodynamic potential, erythrosine exhibits hydrophilicity, negatively impacting its action in biological membranes. Therefore, the incorporation of erythrosine in micellar polymeric systems, such as poloxamers, may overcome this limitation. Moreover, using bioadhesive and thermoresponsive polymers to combine in situ gelation and bioadhesion may enhance retention of this topically applied drug. In this work, mucoadhesive and thermoresponsive micellar systems were prepared containing erythrosine in two states: the native form (ERI) and the disodium salt (ERIs). The systems were evaluated based on the effect of ERI/ERIs on the micellar structure of the binary polymer mixtures. Optimised combinations of poloxamer 407 (polox407) and mucoadhesive sodium carboxymethylcellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC) were used as micellar systems for ERI or ERIs delivery. The systems were studied with respect to theoretical interactions, qualitative composition, morphology, and micellar properties. In silico modelling indicated a higher interaction of the drug with poly(ethylene oxide) (PEO) than poly(propylene oxide) (PPO) fragments of polox407. Systems containing NaCMC displayed a repulsive effect in the presence of erythrosine, due to the polymer's charge density. Both systems could convert the photosensitizer in its monomeric form, ensuring photodynamic activity. In these mixtures, crystallinity, critical micellar temperature and enthalpy of polox407 micellisation were reduced, and micellar size, evaluated by transmission electron microscopy (TEM), showed low impact of ERI/ERIs in HPMC preparations. Aiming toward photodynamic applications, the findings showed how ERI or ERIs can affect the micellar formation of gels composed of 17.5% (w/w) polox407 and 3% (w/w) HPMC or 1% (w/w) NaCMC, important for understating their behaviour and future utilisation as erythrosine delivery systems.


Assuntos
Eritrosina , Poloxâmero , Celulose , Simulação por Computador , Derivados da Hipromelose
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119173, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316657

RESUMO

Hypericin (Hy) compound presents a high photoactivity in photodynamic therapy (PDT), photodiagnosis and theranostics applications. The maintenance of this compound in monomeric form could undermine the potential benefits of its photophysical and photodynamic activity. In this study, we demonstrated that the Hy formulated in a system based on the use of the F127 copolymer and the 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine (DPPC) as micelles, liposomal vesicles and Copolymer-Lipid coated systems, have improved its photophysical properties for many clinical modalities. Based on the results of the triplet state lifetime values (τt), the singlet oxygen quantum yield (ΦΔ1O2), the fluorescence lifetime (τF) and the fluorescence quantum yield (ΦF), all Hy formulations had its photophysical properties described in different models of drug delivery systems (DDS). In addition, the transient spectra profile of those formulations was unaffected by the Hy incorporation process, except for the liposomal system, which demonstrated to be the less stable one by flash photolysis technique. The cytotoxic effects of those formulations were also investigated for CaCo-2 and HaCat cells line. The cytotoxic concentrations for 50% (CC50) were 0.56, 1.05, 1.33 and 4.80 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for CaCo-2 cells, respectively, and 0.69, 2.02, 1.45 and 1.16 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for HaCat cells, respectively. The F127 copolymer had a significant role in many photophysical parameters determined for Copolymer-Lipid/Hy coated system. Although all those formulations had shown satisfactory results, Copolymer-Lipid/Hy proved to be superior in many aspects, being the most promising formulation for PDT, photodiagnosis and theranostics applications.


Assuntos
Nanoestruturas , Fotoquimioterapia , Antracenos , Células CACO-2 , Humanos , Lipossomos , Micelas , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/uso terapêutico , Polietilenos , Polipropilenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA