Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682632

RESUMO

The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Materiais Biocompatíveis/uso terapêutico , Biofilmes , Humanos , Qualidade de Vida , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus/fisiologia , Staphylococcus aureus/fisiologia
2.
J Microencapsul ; 33(8): 750-762, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27845595

RESUMO

The aim of this work was the assessment of the "in vivo" immune response of a poly(lactide-co-glycolide)-based nanoparticulate adjuvant for a sub-unit vaccine, namely, a purified recombinant collagen-binding bacterial adhesion fragment (CNA19), against Staphylococcus aureus-mediated infections. "In vivo" immunogenicity studies were performed on mice: immunisation protocols encompassed subcutaneous and intranasal administration of CNA19 formulated as nanoparticles (NPs) and furthermore, CNA19-loaded NPs formulated in a set-up thermosetting chitosan-ß-glycerolphosphate (chitosan-ß-GP) solution for intranasal route in order to extend antigen exposure to nasal mucosa. CNA19 loaded NPs (mean size of about 195 nm, 9.04 ± 0.37µg/mg as CNA19 loading capacity) confirmed as suitable vaccine for subcutaneous administration with a more pronounced adjuvant effect (about 3-fold higher) with respect to aluminium, recognised as "reference" adjuvant. CNA19 loaded NPs formulated in an optimised thermogelling chitosan-ß-GP solution showed promising results for eliciting an effective humoral response and a good chance as intranasal boosting dose.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/administração & dosagem , Staphylococcus aureus/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Administração Intranasal , Animais , Feminino , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia , Vacinas Antiestafilocócicas/uso terapêutico , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/farmacologia , Vacinas Sintéticas/uso terapêutico
3.
J Biomed Mater Res A ; 73(1): 1-11, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15704114

RESUMO

Physicochemical and mechanical properties, in vitro cytotoxicity, cytocompatibility, and platelet adhesion were investigated on a shape-memory polyether-based polyurethane (MM-5520 SMPu) using the polyether-based Pellethane 2363-80AE (Pell-2363 SPU) as reference. MM-5520 SMPu and Pell-2363 SPU showed similar average molecular weights and different surface properties, with a higher hydrophilicity and roughness for the SMPu. By tensile tests and dynamic mechanical analysis, the peculiar characteristics of the MM-5520 SMPu were evidenced: strong temperature-dependent behavior for SMPu compared with SPU, and a high shape recovery. MM-5520 SMPu did not show any cytotoxic effect on the adhesion and proliferation of human skin fibroblasts and gingival fibroblasts, and a good cytocompatibility was observed with both cell types, as demonstrated by cell counting and scanning electron microscopy observations. SMPu compared with SPU showed higher adsorption of extracellular matrix proteins such as fibronectin, fibrinogen, and collagens. Proteins adsorbed onto SMPu significantly enhanced the adhesion and proliferation of human fibroblasts. The interaction of SMPu with platelets was studied with platelet rich plasma. Fewer platelets adhered to the SMPu, with minor morphological variations than onto the SPU. The cytocompatibility and hemocompatibility of MM-5520 SMPu combined with its unique properties such as change in shape or in stiffness, depending on practical requirements, make this shape-memory material potentially advantageous for biomedical applications.


Assuntos
Plaquetas/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Poliuretanos/química , Poliuretanos/farmacologia , Adsorção , Plaquetas/citologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Microscopia Eletrônica de Varredura , Peso Molecular , Poliuretanos/toxicidade , Temperatura , Resistência à Tração
4.
J Biomater Appl ; 16(3): 191-214, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11939455

RESUMO

Three commercial medical-grade polyurethanes (PUs), a poly-ether-urethane (Pellethane), and two poly-carbonate-urethanes, the one aromatic (Bionate) and the other aliphatic (Chronoflex), were tested for macrophages and bacterial cells adhesion, in the presence or absence of adhesive plasma proteins. All the experiments were carried out on PUs films obtained by solvent casting. The wettability of these films was analysed by measuring static contact angles against water. The ability of the selected PUs to adsorb human fibronectin (Fn) and fibrinogen (Fbg) was checked by ELISA with biotin-labelled proteins. All PUs were able to adsorb Fn and Fbg (Fn > Fbg). Fn adsorption was in the order: Pellethane > Chronoflex > Bionate, the highest Fbg adsorption being detected onto Bionate (Bionate > Chronoflex > Pellethane). The human macrophagic line J111, and the two main bacterial strains responsible for infection in humans (Staphylococcus aureus Newman and Staphylococcus epidermidis 14852) were incubated in turn with the three PUs, uncoated or coated with plasma proteins. No macrophage or bacterial adhesion was observed onto uncoated PUs. PUs coated with plasma, Fn or Fbg promoted bacterial adhesion (S. aureus > S. epidermidis), whereas macrophage adhered more onto PUs coated with Fn or plasma. The coating with Fbg did not promote cell adhesion. Pellethane showed the highest macrophage activation (i.e. spreading), followed, in the order, by Bionate and Chronoflex.


Assuntos
Macrófagos/efeitos dos fármacos , Poliuretanos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Biotina/metabolismo , Adesão Celular , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Técnicas In Vitro , Macrófagos/ultraestrutura , Microscopia Eletrônica de Varredura
5.
Biomaterials ; 33(26): 5967-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22695065

RESUMO

Implant infections in orthopaedics, as well as in many other medical fields, are chiefly caused by staphylococci. The ability of growing within a biofilm enhances the chances of staphylococci to protect themselves from host defences, antibiotic therapies, and biocides. Advances in scientific knowledge on structural molecules (exopolysaccharide, proteins, teichoic acids, and the most recently described extracellular DNA), on the synthesis and genetics of staphylococcal biofilms, and on the complex network of signal factors that intervene in their control are here presented, also reporting on the emerging strategies to disrupt or inhibit them. The attitude of polymorphonuclear neutrophils and macrophages to infiltrate and phagocytise biofilms, as well as the ambiguous behaviour exhibited by these innate immune cells in biofilm-related implant infections, are here discussed. Research on anti-biofilm biomaterials is focused, reviewing materials loaded with antibacterial substances, or coated with anti-adhesive/anti-bacterial immobilized agents, or surfaced with nanostructures. Latter approaches appear promising, since they avoid the spread of antibacterial substances in the neighbouring tissues with the consequent risk of inducing bacterial resistance.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/patogenicidade , Animais , Antibacterianos/química , Humanos , Staphylococcus/crescimento & desenvolvimento
6.
Biomaterials ; 31(25): 6363-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20542556

RESUMO

Antibiotic-loaded biomaterials are currently part of standard medical procedures for both local treatment and prevention of implant infections. The achievement of local delivery of significant quantities of active drugs directly at the site of infection, bypassing or reducing the risks of systemic effects, represents a strong point in favor of this approach. When the aim is to resolve an existing infection, controlled local release of antibiotics can be properly targeted based on the characteristics of the bacterial isolate obtained from the infection site. Under these circumstances the choice of the antibiotic is rational and this local administration route offers new unprecedented possibilities for an efficacious in situ treatment, avoiding the adverse effects of conventional systemic chemotherapies. Although the idea of self sterilizing implants is appealing, controversial is the use of antibiotic-loaded biomaterials in uninfected tissues to prevent implant infections. Systems designed for prolonged release of prophylactic inhibitory or subinhibitory amounts of antibiotics, in absence of strict harmonized guidelines, raise concerns for their still weakly proved efficacy but, even more, for their possible contribution to enhancing biofilm formation and selecting resistant mutants. This consideration holds especially true if the antibiotic-loaded represents the first-line treatment against multiresistant strains.


Assuntos
Antibacterianos/administração & dosagem , Antibioticoprofilaxia/efeitos adversos , Materiais Biocompatíveis/efeitos adversos , Resistência Microbiana a Medicamentos , Animais , Antibioticoprofilaxia/métodos , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/efeitos adversos , Humanos , Ortopedia , Próteses e Implantes
7.
J Mater Sci Mater Med ; 18(11): 2109-15, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17665117

RESUMO

Percutaneous devices are extensively used in modern medicine therapies, even in long term applications. Complications from their use, related to bacterial colonization and/or to materials thrombogenicity, may result in a significant morbidity and mortality incidence. In this study, a novel polycarbonate-urethane (PCU), incorporating a tailor-made diamino-diamide-diol (PIME) showing the ability to bind heparin at physiological pH, was compared to commercial medical-grade PCUs (Carbothane and Bionate). Mechanical and thermal properties were evaluated by tensile tests, dynamic mechanical analysis and differential scanning calorimetry. The presence of a low amount of PIME chain extender in Bionate polyurethanes (Bionate-PIME) slightly affects the mechanical properties, remaining however comparable with the medical grade PCUs used for the fabrication of cardiovascular devices. To verify thereof heparin surface adsorbed in disfavouring bacterial colonization, heparinized Bionate-PIME was tested for bacterial adhesion, using Bionate and Carbothane as reference. In vitro bacterial interaction tests were performed with the strains mainly involved in the pathogenesis of device-related infections (S. epidermidis and S. aureus). MTT tests and SEM observations showed a decrease in colonization of the different strains on the heparinized Bionate-PIME surfaces, confirming that preadsorbed heparin plays a role in mediating the biomaterial surface/bacterial cells interactions.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Heparina/química , Viabilidade Microbiana/efeitos dos fármacos , Cimento de Policarboxilato/farmacologia , Uretana/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Contagem de Colônia Microbiana , Teste de Materiais , Microscopia Eletrônica de Varredura , Modelos Biológicos , Cimento de Policarboxilato/química , Staphylococcaceae/efeitos dos fármacos , Staphylococcaceae/crescimento & desenvolvimento , Propriedades de Superfície , Uretana/química
8.
Phys Rev Lett ; 96(2): 028108, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486653

RESUMO

We show that FbsA, a cell wall protein of the bacterium Streptococcus agalactiae, promotes large-scale aggregation of human plasma fibrinogen, leading to the formation of a semiflexible polymerlike network. This extensive aggregation process takes place not only in solution, but also on FbsA-functionalized colloidal particles, and leads to the formation of a thick layer on the bacterial cell wall itself, which becomes an efficient mask against phagocytosis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Fibrinogênio/metabolismo , Streptococcus agalactiae/metabolismo , Proteínas de Bactérias/química , Biopolímeros/química , Biopolímeros/metabolismo , Proteínas de Transporte/química , Coloides , Fibrinogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA