Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213928

RESUMO

Highly efficient, biocompatible, and fast nucleic acid delivery methods are essential for biomedical applications and research. At present, two main strategies are used to this end. In non-viral transfection liposome- or polymer-based formulations are used to transfer cargo into cells via endocytosis, whereas viral carriers enable direct nucleic acid delivery into the cell cytoplasm. Here, we introduce a new generation of liposomes for nucleic acid delivery, which immediately fuse with the cellular plasma membrane upon contact to transfer the functional nucleic acid directly into the cell cytoplasm. For maximum fusion efficiency combined with high cargo transfer, nucleic acids had to be complexed and partially neutralized before incorporation into fusogenic liposomes. Among the various neutralization agents tested, small, linear, and positively charged polymers yielded the best complex properties. Systematic variation of liposomal composition and nucleic acid complexation identified surface charge as well as particle size as essential parameters for cargo-liposome interaction and subsequent fusion induction. Optimized protocols were tested for the efficient transfer of different kinds of nucleic acids like plasmid DNA, messenger RNA, and short-interfering RNA into various mammalian cells in culture and into primary tissues.


Assuntos
Lipossomos/química , Transfecção/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Fusão de Membrana , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Eletricidade Estática , Transfecção/normas
2.
PLoS One ; 14(3): e0210570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30865622

RESUMO

In mammalian cells, actin, microtubules, and various types of cytoplasmic intermediate filaments respond to external stretching. Here, we investigated the underlying processes in endothelial cells plated on soft substrates from silicone elastomer. After cyclic stretch (0.13 Hz, 14% strain amplitude) for periods ranging from 5 min to 8 h, cells were fixed and double-stained for microtubules and either actin or vimentin. Cell images were analyzed by a two-step routine. In the first step, micrographs were segmented for potential fibrous structures. In the second step, the resulting binary masks were auto- or cross-correlated. Autocorrelation of segmented images provided a sensitive and objective measure of orientational and translational order of the different cytoskeletal systems. Aligning of correlograms from individual cells removed the influence of only partial alignment between cells and enabled determination of intrinsic cytoskeletal order. We found that cyclic stretching affected the actin cytoskeleton most, microtubules less, and vimentin mostly only via reorientation of the whole cell. Pharmacological disruption of microtubules had barely any influence on actin ordering. The similarity, i.e., cross-correlation, between vimentin and microtubules was much higher than the one between actin and microtubules. Moreover, prolonged cyclic stretching slightly decoupled the cytoskeletal systems as it reduced the cross-correlations in both cases. Finally, actin and microtubules were more correlated at peripheral regions of cells whereas vimentin and microtubules correlated more in central regions.


Assuntos
Citoesqueleto/fisiologia , Células Endoteliais/citologia , Estresse Mecânico , Actinas/química , Algoritmos , Células Endoteliais da Veia Umbilical Humana , Humanos , Microtúbulos/química , Elastômeros de Silicone/química , Vimentina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA