Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioconjug Chem ; 32(8): 1802-1811, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34161070

RESUMO

With the advent of novel immunotherapies, interest in ex vivo autologous cell labeling for in vivo cell tracking has revived. However, current clinically available labeling strategies have several drawbacks, such as release of radiolabel over time and cytotoxicity. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are clinically used biodegradable carriers of contrast agents, with high loading capacity for multimodal imaging agents. Here we show the development of PLGA-based NPs for ex vivo cell labeling and in vivo cell tracking with SPECT. We used primary amine-modified PLGA polymers (PLGA-NH2) to construct NPs similar to unmodified PLGA NPs. PLGA-NH2 NPs were efficiently radiolabeled without chelator and retained the radionuclide for 2 weeks. Monocyte-derived dendritic cells labeled with [111In]In-PLGA-NH2 showed higher specific activity than those labeled with [111In]In-oxine, with no negative effect on cell viability. SPECT/CT imaging showed that radiolabeled THP-1 cells accumulated at the Staphylococcus aureus infection site in mice. In conclusion, PLGA-NH2 NPs are able to retain 111In, independent of chelator presence. Furthermore, [111In]In-PLGA-NH2 allows cell labeling with high specific activity and no loss of activity over prolonged time intervals. Finally, in vivo tracking of ex vivo labeled THP-1 cells was demonstrated in an infection model using SPECT/CT imaging.


Assuntos
Rastreamento de Células , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Compostos Radiofarmacêuticos/síntese química , Aminas/química , Animais , Sobrevivência Celular , Feminino , Humanos , Camundongos , Compostos Radiofarmacêuticos/farmacologia , Células THP-1
2.
Nanoscale ; 15(44): 18068-18079, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916411

RESUMO

19F magnetic resonance imaging (19F MRI) is an emerging technique for quantitative imaging in novel therapies, such as cellular therapies and theranostic nanocarriers. Nanocarriers loaded with liquid perfluorocarbon (PFC) typically have a (single) core-shell structure with PFC in the core due to the poor miscibility of PFC with organic and inorganic solvents. Paramagnetic relaxation enhancement acts only at a distance of a few angstroms. Thus, efficient modulation of the 19F signal is possible only with fluorophilic PFC-soluble chelates. However, these chelates cannot interact with the surrounding environment and they might result in image artifacts. Conversely, chelates bound to the nanoparticle shell typically have a minimal effect on the 19F signal and a strong impact on the aqueous environment. We show that the confinement of PFC in biodegradable polymeric nanoparticles (NPs) with a multicore structure enables the modulation of longitudinal (T1) and transverse (T2) 19F relaxation, as well as proton (1H) signals, using non-fluorophilic paramagnetic chelates. We compared multicore NPs versus a conventional single core structure, where the PFC is encapsulated in the core(s) and the chelate in the surrounding polymeric matrix. This modulated relaxation also makes multicore NPs sensitive to various acidic pH environments, while preserving their stability. This effect was not observed with single core nanocapsules (NCs). Importantly, paramagnetic chelates affected both T1 and T219F relaxation in multicore NPs, but not in single core NCs. Both relaxation times of the 19F nucleus were enhanced with an increasing concentration of the paramagnetic chelate. Moreover, as the polymeric matrix remained water permeable, proton enhancement additionally was observed in MRI.


Assuntos
Fluorocarbonos , Nanopartículas , Gadolínio/química , Meios de Contraste/farmacologia , Meios de Contraste/química , Prótons , Imageamento por Ressonância Magnética/métodos , Polímeros de Fluorcarboneto , Quelantes/farmacologia , Fluorocarbonos/química , Nanopartículas/química
3.
Adv Sci (Weinh) ; 8(11): e2100067, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34105269

RESUMO

Spraying of agrochemicals (pesticides, fertilizers) causes environmental pollution on a million-ton scale. A sustainable alternative is target-specific, on-demand drug delivery by polymeric nanocarriers. Trunk injections of aqueous nanocarrier dispersions can overcome the biological size barriers of roots and leaves and allow distributing the nanocarriers through the plant. To date, the fate of polymeric nanocarriers inside a plant is widely unknown. Here, the in planta conditions in grapevine plants are simulated and the colloidal stability of a systematic series of nanocarriers composed of polystyrene (well-defined model) and biodegradable lignin and polylactic-co-glycolic acid by a combination of different techniques is studied. Despite the adsorption of carbohydrates and other biomolecules onto the nanocarriers' surface, they remain colloidally stable after incubation in biological fluids (wood sap), suggesting a potential transport via the xylem. The transport is tracked by fluorine- and ruthenium-labeled nanocarriers inside of grapevines by 19 F-magnetic resonance imaging or induced coupled plasma - optical emission spectroscopy. Both methods show that the nanocarriers are transported inside of the plant and proved to be powerful tools to localize nanomaterials in plants. This study provides essential information to design nanocarriers for agrochemical delivery in plants to sustainable crop protection.


Assuntos
Agroquímicos/farmacologia , Proteção de Cultivos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Agroquímicos/química , Coloides/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Fertilizantes/efeitos adversos , Humanos , Lignina , Nanoestruturas , Praguicidas/efeitos adversos , Praguicidas/química , Plantas/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia
4.
ACS Appl Mater Interfaces ; 12(44): 49335-49345, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33086007

RESUMO

Perfluorocarbon-loaded nanoparticles are powerful theranostic agents, which are used in the therapy of cancer and stroke and as imaging agents for ultrasound and 19F magnetic resonance imaging (MRI). Scaling up the production of perfluorocarbon-loaded nanoparticles is essential for clinical translation. However, it represents a major challenge as perfluorocarbons are hydrophobic and lipophobic. We developed a method for continuous-flow production of perfluorocarbon-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a modular microfluidic system, with sufficient yields for clinical use. We combined two slit interdigital micromixers with a sonication flow cell to achieve efficient mixing of three phases: liquid perfluorocarbon, PLGA in organic solvent, and aqueous surfactant solution. The production rate was at least 30 times higher than with the conventional formulation. The characteristics of nanoparticles can be adjusted by changing the flow rates and type of solvent, resulting in a high PFC loading of 20-60 wt % and radii below 200 nm. The nanoparticles are nontoxic, suitable for 19F MRI and ultrasound imaging, and can dissolve oxygen. In vivo 19F MRI with perfluoro-15-crown-5 ether-loaded nanoparticles showed similar biodistribution as nanoparticles made with the conventional method and a fast clearance from the organs. Overall, we developed a continuous, modular method for scaled-up production of perfluorocarbon-loaded nanoparticles that can be potentially adapted for the production of other multiphase systems. Thus, it will facilitate the clinical translation of theranostic agents in the future.


Assuntos
Fluorocarbonos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células Cultivadas , Humanos , Imageamento por Ressonância Magnética , Técnicas Analíticas Microfluídicas , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Nanomedicina Teranóstica
5.
Acta Biomater ; 73: 38-51, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653217

RESUMO

Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. STATEMENT OF SIGNIFICANCE: Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.


Assuntos
Materiais Biocompatíveis/química , Teste de Materiais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Humanos , Microfluídica/instrumentação , Microfluídica/métodos
6.
ACS Appl Mater Interfaces ; 10(30): 25056-25068, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29965724

RESUMO

Medium-chain length polyhydroxyalkanoates (MCL-PHAs) have demonstrated exceptional properties for cardiac tissue engineering (CTE) applications. Despite prior work on MCL-PHA/polycaprolactone (PCL) blends, optimal scaffold production and use as an alternative delivery route for controlled release of seeded cardiac progenitor cells (CPCs) in CTE applications in vivo has been lacking. We present herein applicability of MCL-PHA/PCL (95/5 wt %) blends fabricated as thin films with an improved performance compared to the neat MCL-PHA. Polymer characterization confirmed the chemical structure and composition of the synthesized scaffolds, while thermal, wettability, and mechanical properties were also investigated and compared in neat and porous counterparts. In vitro cytocompatibility studies were performed using perfluorocrown-ether-nanoparticle-labeled murine CPCs and studied using confocal microscopy and 19F magnetic resonance spectroscopy and magnetic resonance imaging (MRI). Seeded scaffolds were implanted and studied in the postmortem murine heart in situ and in two additional C57BL/6 mice in vivo (using single-layered and double-layered scaffolds) and imaged immediately after and at 7 days postimplantation. Superior MCL-PHA/PCL scaffold performance has been demonstrated compared to MCL-PHA through experimental comparisons of (a) morphological data using scanning electron microscopy and (b) contact angle measurements attesting to improved CPC adhesion, (c) in vitro confocal microscopy showing increased SC proliferative capacity, and (d) mechanical testing that elicited good overall responses. In vitro MRI results justify the increased seeding density, increased in vitro MRI signal, and improved MRI visibility in vivo, in the double-layered compared to the single-layered scaffolds. Histological evaluations [bright-field, cytoplasmic (Atto647) and nuclear (4',6-diamidino-2-phenylindole) stains] performed in conjunction with confocal microscopy imaging attest to CPC binding within the scaffold, subsequent release and migration to the neighboring myocardium, and increased retention in the murine myocardium in the case of the double-layered scaffold. Thus, MCL-PHA/PCL blends possess tremendous potential for controlled delivery of CPCs and for maximizing possible regeneration in myocardial infarction.


Assuntos
Poli-Hidroxialcanoatos/química , Animais , Coração , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Poliésteres , Células-Tronco , Engenharia Tecidual , Alicerces Teciduais
7.
ACS Nano ; 11(2): 1957-1963, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28187254

RESUMO

We report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers. The biodegradable motor system was further shown to move directionally with speeds up to 39 µm/s by converting chemical fuel, hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release of therapeutic drugs.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Eritrócitos/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Platina/química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Lactonas/química , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Poliestirenos/química , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 9(27): 22149-22159, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28635249

RESUMO

Calcium phosphate cement (CPC) is used in bone repair because of its biocompatibility. However, high similarity between CPC and the natural osseous phase results in poor image contrast in most of the available in vivo imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI). For accurate identification and localization during and after implantation in vivo, a composition with enhanced image contrast is needed. In this study, we labeled CPC with perfluoro-15-crown-5-ether-loaded (PFCE) poly(latic-co-glycolic acid) nanoparticles (hydrodynamic radius 100 nm) and gold nanoparticles (diameter 40 nm), as 19F MRI and CT contrast agents, respectively. The resulting CPC/PFCE/gold composite is implanted in a rat model for in vivo longitudinal imaging. Our findings show that the incorporation of the two types of different nanoparticles did result in adequate handling properties of the cement. Qualitative and quantitative long-term assessment of CPC/PFCE/gold degradation was achieved in vivo and correlated to the new bone formation. Finally, no adverse biological effects on the bone tissue are observed via histology. In conclusion, an easy and efficient strategy for following CPC implantation and degradation in vivo is developed. As all materials used are biocompatible, this CPC/PFCE/gold composite is clinically applicable.


Assuntos
Fluorocarbonos/química , Animais , Cimentos Ósseos , Fosfatos de Cálcio , Ouro , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Ratos , Tomografia Computadorizada por Raios X
9.
Nanomedicine (Lond) ; 10(15): 2339-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251876

RESUMO

AIM: In vivo imaging using (19)F MRI is advantageous, due to its ability to quantify cell numbers, but is limited for a lack of suitable labels. Here, we formulate two stable and clinically applicable labels for tracking two populations of primary human dendritic cells (DCs) simultaneously. MATERIALS & METHODS: Plasmacytoid and myeloid DCs are able to take up sufficient nanoparticles (200 nm) for imaging (10(12 19)F's per cell), despite being relatively nonphagocytic. RESULTS: Clinically relevant numbers of labeled DCs could be imaged in about 10 min, even on a clinical scanner. CONCLUSION: We demonstrate the use of perfluorocarbon nanoparticles for simultaneous (19)F MRI of distinct cell populations in a clinical setting, without spectroscopic imaging.


Assuntos
Fluorocarbonos/química , Ácido Láctico/química , Nanopartículas , Ácido Poliglicólico/química , Células Cultivadas , Imagem por Ressonância Magnética de Flúor-19 , Humanos , Teste de Cultura Mista de Linfócitos , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA