Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22434909

RESUMO

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Assuntos
Basidiomycota/genética , Genômica , Lignina/metabolismo , Basidiomycota/classificação , Hidrólise , Dados de Sequência Molecular , Oxirredução , Filogenia , Especificidade da Espécie
2.
Appl Environ Microbiol ; 77(22): 7933-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21948841

RESUMO

Brown rot basidiomycetes have an important ecological role in lignocellulose recycling and are notable for their rapid degradation of wood polymers via oxidative and hydrolytic mechanisms. However, most of these fungi apparently lack processive (exo-acting) cellulases, such as cellobiohydrolases, which are generally required for efficient cellulolysis. The recent sequencing of the Postia placenta genome now permits a proteomic approach to this longstanding conundrum. We grew P. placenta on solid aspen wood, extracted proteins from the biodegrading substrate, and analyzed tryptic digests by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the data with the predicted P. placenta proteome revealed the presence of 34 likely glycoside hydrolases, but only four of these--two in glycoside hydrolase family 5, one in family 10, and one in family 12--have sequences that suggested possible activity on cellulose. We expressed these enzymes heterologously and determined that they all exhibited endoglucanase activity on phosphoric acid-swollen cellulose. They also slowly hydrolyzed filter paper, a more crystalline substrate, but the soluble/insoluble reducing sugar ratios they produced classify them as nonprocessive. Computer simulations indicated that these enzymes produced soluble/insoluble ratios on reduced phosphoric acid-swollen cellulose that were higher than expected for random hydrolysis, which suggests that they could possess limited exo activity, but they are at best 10-fold less processive than cellobiohydrolases. It appears likely that P. placenta employs a combination of oxidative mechanisms and endo-acting cellulases to degrade cellulose efficiently in the absence of a significant processive component.


Assuntos
Celulases/análise , Coriolaceae/enzimologia , Coriolaceae/metabolismo , Proteoma/análise , Madeira/metabolismo , Madeira/microbiologia , Celulose/metabolismo , Cromatografia Líquida , Clonagem Molecular , Coriolaceae/química , Coriolaceae/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/genética , Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
3.
FEBS Lett ; 584(21): 4435-41, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20932833

RESUMO

In this work glycosyl hydrolase (GH) family 30 (GH30) is analyzed and shown to consist of its currently classified member sequences as well as several homologous sequence groups currently assigned within family GH5. A large scale amino acid sequence alignment and a phylogenetic tree were generated and GH30 groups and subgroups were designated. A partial rearrangement in the GH30 defining side-associated ß-domain contributes to the differentiation of two major groups that contain up to eight subgroups. For this CAZy family of Clan A enzymes the dual domain fold is conserved, suggesting that it may be a requirement for evolved function. This work redefines GH family 30 and serves as a guide for future efforts regarding enzymes classified within this family.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificação , Filogenia , Sequência de Aminoácidos , Sequência Conservada , Glicosídeo Hidrolases/metabolismo , Humanos , Lignina/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
4.
J Bacteriol ; 188(24): 8617-26, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028274

RESUMO

Secretion of xylanase activities by Bacillus subtilis 168 supports the development of this well-defined genetic system for conversion of methylglucuronoxylan (MeGAXn [where n represents the number of xylose residues]) in the hemicellulose component of lignocellulosics to biobased products. In addition to the characterized glycosyl hydrolase family 11 (GH 11) endoxylanase designated XynA, B. subtilis 168 secretes a second endoxylanase as the translated product of the ynfF gene. This sequence shows remarkable homology to the GH 5 endoxylanase secreted by strains of Erwinia chrysanthemi. To determine its properties and potential role in the depolymerization of MeGAXn, the ynfF gene was cloned and overexpressed to provide an endoxylanase, designated XynC, which was characterized with respect to substrate preference, kinetic properties, and product formation. With different sources of MeGAXn as the substrate, the specific activity increased with increasing methylglucuronosyl substitutions on the beta-1,4-xylan chain. With MeGAXn from sweetgum as a preferred substrate, XynC exhibited a Vmax of 59.9 units/mg XynC, a Km of 1.63 mg MeGAXn/ml, and a k(cat) of 2,635/minute at pH 6.0 and 37 degrees C. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and 1H nuclear magnetic resonance data revealed that each hydrolysis product has a single glucuronosyl substitution penultimate to the reducing terminal xylose. This detailed analysis of XynC from B. subtilis 168 defines the unique depolymerization process catalyzed by the GH 5 endoxylanases. Based upon product analysis, B. subtilis 168 secretes both XynA and XynC. Expression of xynA was subject to MeGAXn induction; xynC expression was constitutive with growth on different substrates. Translation and secretion of both GH 11 and GH 5 endoxylanases by the fully sequenced and genetically malleable B. subtilis 168 recommends this bacterium for the introduction of genes required for the complete utilization of products of the enzyme-catalyzed depolymerization of MeGAXn. B. subtilis may serve as a model platform for development of gram-positive biocatalysts for conversion of lignocellulosic materials to renewable fuels and chemicals.


Assuntos
Bacillus subtilis/enzimologia , Polímeros/metabolismo , Xilano Endo-1,3-beta-Xilosidase , Xilanos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xilano Endo-1,3-beta-Xilosidase/química , Xilano Endo-1,3-beta-Xilosidase/genética , Xilano Endo-1,3-beta-Xilosidase/metabolismo , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA