Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Anal Chem ; 95(33): 12419-12426, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552138

RESUMO

Solid-contact ion-selective electrodes (SC-ISEs) in direct long-term contact with physiological samples must be biocompatible and resistant to biofouling, but most wearable SC-ISEs proposed to date contain plasticized poly(vinyl chloride) (PVC) membranes, which have poor biocompatibility. Silicones are a promising alternative to plasticized PVC because of their excellent biocompatibility, but little work has been done to study the relationship between silicone composition and ISE performance. To address this, we prepared and tested K+ SC-ISEs with colloid-imprinted mesoporous (CIM) carbon as the solid contact and three different condensation-cured silicones: a custom silicone prepared in-house (Silicone 1), a commercial silicone (Dow 3140, Silicone 2), and a commercial fluorosilicone (Dow 730, Fluorosilicone 1). SC-ISEs prepared with each of these polymers and the ionophore valinomycin and added ionic sites exhibited Nernstian responses, excellent selectivities, and signal drifts as low as 3 µV/h in 1 mM KCl solution. All ISEs maintained Nernstian response slopes and had only very slightly worsened selectivities after 41 h exposure to porcine plasma (log KK,Na values of -4.56, -4.58, and -4.49, to -4.04, -4.00, and -3.90 for Silicone 1, Silicone 2, and Fluorosilicone 1, respectively), confirming that these sensors retain the high selectivity that makes them suitable for use in physiological samples. When immersed in porcine plasma, the SC-ISEs exhibited emf drifts that were still fairly low but notably larger than when measurements were performed in pure water. Interestingly, despite the very similar structures of these matrix polymers, SC-ISEs prepared with Silicone 2 showed lower drift in porcine blood plasma (-55 µV/h, over 41 h) compared to Silicone 1 (-495 µV/h) or Fluorosilicone 1 (-297 µV/h).


Assuntos
Plastificantes , Silicones , Animais , Suínos , Eletrodos Seletivos de Íons , Água , Polímeros , Íons/química
2.
BMC Musculoskelet Disord ; 18(1): 276, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645272

RESUMO

BACKGROUND: Bone and joint infection involving Granulicatella adiacens is rare, and mainly involved in cases of bacteremia and infectious endocarditis. Here we report three cases of prosthetic joint infection involving G. adiacens that were successfully treated with surgery and prolonged antimicrobial treatment. We also review the two cases of prosthetic joint infection involving G. adiacens that are reported in the literature. CASE PRESENTATION: Not all five cases of prosthetic joint infection caused by G. adiacens were associated with bacteremia or infectious endocarditis. Dental care before the onset of infection was observed in two cases. The median time delay between arthroplasty implantation and the onset of infection was of 4 years (ranging between 2 and 10 years). One of our cases was identified with 16srRNA gene sequencing, one case with MALDI-TOF mass spectrometry, and one case with both techniques. Two literature cases were diagnosed by 16srRNA gene sequencing. All five cases were cured after surgery including a two-stage prosthesis exchange in three cases, a one-stage prosthesis exchange in one case, and debridement, antibiotics, irrigation, and retention of the prosthesis in one case, and prolonged antimicrobial treatment. CONCLUSION: Prosthetic joint infection involving G. adiacens is probably often dismissed due to difficult culture or misdiagnosis, in particular in the cases of polymicrobial infection. Debridement, antibiotics, irrigation, and retention of the prosthesis associated with prolonged antimicrobial treatment (≥ 8 weeks) should be considered as a treatment strategy for prosthetic joint infection involving G. adiacens.


Assuntos
Carnobacteriaceae/isolamento & purificação , Prótese de Quadril/efeitos adversos , Prótese do Joelho/efeitos adversos , Infecções Relacionadas à Prótese/microbiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
ACS Sens ; 8(4): 1774-1781, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37043696

RESUMO

Nanopore-driven sequestration of ionic liquids from a silicone membrane is presented, a phenomenon that has not been reported previously. Reference electrodes with ionic liquid doped polydimethylsiloxane (PDMS) reference membranes and colloid-imprinted mesoporous carbon (CIM) as solid contact are not functional unless special attention is paid to the porosity of the solid contact. In the fabrication of such reference electrodes, a solution of a hydroxyl-terminated silicone oligomer, ionic liquid, cross-linking reagent, and polymerization catalyst is deposited on top of the carbon layer, rapidly filling the pores of the CIM carbon. The catalyzed polymerization curing of the silicone quickly results in cross-linking of the hydroxyl-terminated polydimethylsiloxane oligomers, forming structures that are too large to penetrate the CIM carbon pores. Therefore, as solvent evaporation from the top of freshly prepared membranes drives the diffusional transport of solvent toward that membrane surface, the solvent molecules that leave the CIM carbon pores can only be replaced by the ionic liquid. This depletes the ionic liquid in the reference membrane that overlies the CIM carbon solid contact and increases the membrane resistance by up to 3 orders of magnitude, rendering the devices dysfunctional. This problem can be avoided by presaturating the CIM carbon with ionic liquid prior to the deposition of the solution that contains the silicone oligomers and ionic liquid. Alternatively, a high amount of ionic liquid can be added into the membrane solution to account for the size-selective sequestration of ionic liquid into the carbon pores. Either way, a wide variety of ionic liquids can be used to prepare PDMS-based reference electrodes with CIM carbon as a solid contact. A similar depletion of the K+ ionophore BME-44 from ion-selective silicone membranes was observed too, highlighting that the depletion of active ingredients from polymeric ion-selective and reference membranes due to interactions with high surface area solid contacts may be a more common phenomenon that so far has been overlooked.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Silicones , Solventes , Carbono/química , Eletrodos , Dimetilpolisiloxanos
6.
Anal Chem ; 82(2): 680-8, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20000696

RESUMO

The effects of the architecture and surface chemistry of three-dimensionally ordered macroporous (3DOM) carbon solid contacts on the properties of ion-selective electrodes (ISEs) were examined. Infiltration of the plasticized poly(vinyl chloride) (PVC) membrane into the pores of the carbon created a large interfacial area between the sensing membrane and the solid contact, as shown by cryo-scanning electron microscopy (cryo-SEM) and elemental analysis. This large interfacial area, along with the high capacitance of the 3DOM carbon solid contacts (as determined by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy) results in an excellent long-term stability of the potentiometric response, with drifts as low as 11.7 muV/h. The comparison of 3DOM carbon solid contacts with an untemplated carbon solid contact shows that the pore structure is an essential feature for the excellent electrode performance. However, the surface chemistry of the 3DOM carbon cannot be ignored. While there is no evidence for an aqueous layer forming between the sensing membrane and unoxidized 3DOM carbon, electrodes based on oxidized 3DOM carbon exhibit potentiometric responses with the typical hysteresis indicative of a water layer. A comparison of the different techniques to characterize the solid contacts confirms that constant-current charge-discharge experiments offer an intriguing approach to assess the long-term stability of solid-contact ISEs but shows that their results need to be interpreted with care.


Assuntos
Carbono/química , Eletrodos Seletivos de Íons , Técnicas Eletroquímicas , Microscopia Eletrônica de Varredura , Oxirredução , Cloreto de Polivinila/química , Porosidade , Potenciometria , Propriedades de Superfície
7.
Anal Chem ; 82(18): 7634-40, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20799720

RESUMO

Ionophore-doped sensing membranes exhibit greater selectivities and wider measuring ranges if their membrane matrixes are noncoordinating and solvate interfering ions poorly. This is particularly true for fluorous phases, which are the least polar and polarizable condensed phases known. In this work, fluorous membrane matrixes were used to prepare silver ion-selective electrodes (ISEs). Sensing membranes composed of perfluoroperhydrophenanthrene, sodium tetrakis[3,5-bis(perfluorohexyl) phenyl]borate, and one of four fluorophilic Ag(+)-selective ionophores with one or two thioether groups were investigated. All electrodes exhibited Nernstian responses to Ag(+) in a wide range of concentrations. Their selectivities for Ag(+) over interfering ions were found to depend on host preorganization and the length of the -(CH(2))(n)- spacers separating the coordinating thioether group from the strongly electron withdrawing perfluoroalkyl groups. ISEs based on the most selective of the four ionophores, that is, 1,3-bis(perfluorodecylethylthiomethyl)benzene, provided much higher selectivities for Ag(+) over many alkaline and heavy metal ions than most Ag(+) ISEs reported in the literature (e.g., log K(Ag,J)(pot) for K(+), -11.6; Pb(2+), -10.2; Cu(2+), -13.0; Cd(2+), -13.2). Moreover, the use of this ionophore with a linear perfluorooligoether as membrane matrix and solid contacts consisting of three-dimensionally ordered macroporous (3DOM) carbon resulted in a detection limit for Ag(+) of 4.1 ppt (3.8 × 10(-1)1 M).


Assuntos
Poluentes Ambientais/análise , Flúor/química , Ionóforos/química , Limite de Detecção , Membranas Artificiais , Prata/análise , Eletrodos , Fluorocarbonos/química , Potenciometria , Água/química
8.
ACS Sens ; 5(6): 1717-1725, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32366104

RESUMO

Many reference electrodes with an ionic liquid-doped reference membrane contain a plasticizer that can gradually leach out into the sample. However, because many common plasticizers are known to be endocrine disruptors and may induce inflammatory reactions, they are preferably avoided for wearable or implantable sensors. Therefore, this work tested polymeric reference electrode membranes prepared by solvent casting from seven commercially available biocompatible silicones that are widely used in implantable devices. Only reference electrodes with membranes consisting of poly(3,3,3-trifluoropropylmethylsiloxane) (Fluorosilicone 1) and one of several 1-methyl-3-alkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids provided a stable and sample-independent potential in electrolyte solutions spanning the range of electrolyte concentrations in human blood, with more hydrophobic ionic liquids performing better. Over 8 days at 37 °C in artificial blood electrolyte solutions, the reference membranes doped with 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide exhibited a potential drift as low as 20 µV/h. In 10% animal serum, a 112 µV/h drift was observed over 5.8 days. The other six silicone materials doped with an ionic liquid either failed to form self-standing membranes or did not provide a sample-independent potential in the ionic concentration range tested. In case of the functional reference electrodes, differential scanning calorimetry confirmed good miscibility between the ionic liquid and the polymer matrix, whereas the poor miscibility of four polymer matrixes and the ionic liquids-as confirmed by differential scanning calorimetry-correlated with an undesirable sample dependence of the reference potential.


Assuntos
Líquidos Iônicos , Eletrodos , Eletrólitos , Humanos , Polímeros , Silicones
9.
Acta Biomater ; 12: 122-128, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25449923

RESUMO

This study demonstrates a method for producing ordered collagen fibrils on a similar length scale to those in the cornea, using a one-pot liquid-phase synthesis. The alignment persists throughout samples on the mm scale. The addition of nanocrystalline cellulose (NCC), a biocompatible and widely available material, to collagen prior to gelation causes the fibrils to align and achieve a narrow size distribution (36±8nm). The effects of NCC loading in the composites on microstructure, transparency and biocompatibility are studied by scanning electron microscopy, ultraviolet-visible spectroscopy and cell growth experiments. A 2% loading of NCC increases the transparency of collagen while producing an ordered microstructure. A mechanism is proposed for the ordering behavior on the basis of enhanced hydrogen bonding during collagen gel formation.


Assuntos
Celulose/química , Colágeno/química , Nanoestruturas , Materiais Biocompatíveis , Células Cultivadas , Cristalização , Humanos , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta
10.
Invest Ophthalmol Vis Sci ; 53(13): 8192-9, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23150623

RESUMO

PURPOSE: To investigate compositions of silica-collagen hybrid materials as potential artificial corneal substitutes, how these components affect the optical and biomechanical properties of the hybrids, and their biocompatibility in an organ culture model. METHODS: Hybrid materials were created from different proportions of collagen and silica precursors and manufactured to specific dimensions. The microstructure of the materials was determined by electron microscopy and mechanical strength was measured by using suture pullout tests. The refractive index and transmittance were measured by using an Abbe refractometer and a spectrophotometer. Materials were implanted into rabbit corneas to determine their epithelialization in organ culture. RESULTS: Scanning electron microscopy demonstrated that the hybrid material consisted of silica-encapsulating collagen fibrils. The refractive index ranged from 1.332 to 1.403 depending upon the composition and manufacturing characteristics. The rupture strength of a 3:1 (silica:collagen ratio by weight) rehydrated xerogel was 0.161 ± 0.073 N/mm (n = 12), while the hydrogels and 9:1 xerogel were too fragile for suturing. Re-epithelialization of 5- to 6-mm-wide rabbit corneal epithelial defects was complete in 5.5 ± 2.4 days (n = 6), with evidence of epithelial stratification. CONCLUSIONS: Silica-collagen hybrid materials can be manufactured to specific dimensions to serve as a possible artificial corneal substitute. In preliminary studies, the materials had favorable optical, biomechanical, and biocompatibility properties necessary for replacing the corneal stroma.


Assuntos
Órgãos Artificiais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos/fisiologia , Colágeno Tipo I/química , Córnea , Silanos/química , Engenharia Tecidual , Animais , Colágeno Tipo I/ultraestrutura , Microscopia Eletrônica de Varredura , Óptica e Fotônica , Técnicas de Cultura de Órgãos , Coelhos
11.
ACS Appl Mater Interfaces ; 3(9): 3709-17, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21854000

RESUMO

Natural vermiculite was modified by cation exchange with long-chain quaternary alkylammonium salts and then dispersed in polyether-based polyols with different structures and ethylene oxide/propylene oxide ratios. The dispersions were evaluated by X-ray scattering and rheology. In all polyol dispersions tested, polyols were intercalated into the vermiculite interlayers. Also, significant shear thinning behavior was observed. A large interlayer spacing of ∼90 Šwas achieved in one polyol suitable for polyurethane elastomer synthesis. In polyurethane made with this polyol, clay platelets were extensively intercalated or exfoliated. The composites showed a >270% increase in tensile modulus, >60% increase in tensile strength, and a 30% reduction in N(2) permeability with a loading of 5.3 wt % clay in polyurethane. Differential scanning calorimetry and dynamic mechanical analysis revealed that the nanoclay interacts with the polyurethane hard segments.


Assuntos
Silicatos de Alumínio/química , Nanocompostos/química , Poliuretanos/química , Varredura Diferencial de Calorimetria , Compostos de Epóxi/química , Óxido de Etileno/química , Nitrogênio/química , Polímeros/química , Compostos de Amônio Quaternário/química
12.
Anal Chem ; 79(12): 4621-6, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17508716

RESUMO

Electrodes with three-dimensionally ordered macroporous (3DOM) carbon as the intermediate layer between an ionophore-doped solvent polymeric membrane and a metal contact are presented as a novel approach to solid-contact ion-selective electrodes (SC-ISEs). Due to the well-interconnected pore and wall structure of 3DOM carbon, filling of the 3DOM pores with an electrolyte solution results in a nanostructured material that exhibits high ionic and electric conductivity. The long-term drift of freshly prepared SC-ISEs with 3DOM carbon contacts is only 11.7 microV/h, and does not increase when in contact with solution for 1 month, making this the most stable SC-ISE reported so far. The electrodes show good resistance to the interference from oxygen. Moreover, in contrast to previously reported SC-ISEs with conducting polymers as the intermediate layer, 3DOM carbon is an electron conductor rather than a semiconductor, eliminating any light interference.


Assuntos
Carbono/química , Eletrodos Seletivos de Íons , Polímeros/química , Condutividade Elétrica , Metais/química , Oxirredução , Oxigênio/química , Porosidade , Potenciometria/instrumentação , Potenciometria/métodos , Sensibilidade e Especificidade , Solventes/química , Fatores de Tempo
13.
Eur Heart J ; 25(15): 1330-40, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15288161

RESUMO

AIM: The aim of this study was to assess technical feasibility, biocompatibility, and impact on coronary stenosis of a new biodegradable paclitaxel-loaded polylactide stent. Due to high rates of in-stent restenosis and permanent nature of metal stent implants, synthetic polymers have been proposed as surrogate materials for stents and local delivery systems for drugs. Paclitaxel was shown to inhibit vascular smooth muscle cell proliferation and migration. METHODS AND RESULTS: A novel biodegradable double-helical stent was manufactured using controlled expansion of saturated polymers (CESP) for the moulding of a bioresorbable poly(D,L)-lactic acid (PDLLA). A modified balloon catheter for stent deployment was developed according to the mechanical stent properties. Twelve paclitaxel-loaded (170 microg) polylactide stents, 12 unloaded polylactide stents, and 12 316L bare metal stents were deployed in porcine coronary arteries of 36 animals. Six pigs of each group were sacrificed after 3 weeks and 3 months, respectively, for every setting. Drug release kinetics as well as histomorphometrical and histopathological analyses were performed. A slow paclitaxel release kinetic for more than 2 months and therapeutic tissue concentrations were demonstrated. Coronary stenosis after implantation of paclitaxel-loaded stents (30+/-5% or 49+/-4%) was significantly inhibited compared to unloaded PDLLA stents (65+/-10%, P=0.021 or 71+/-4%, P=0.004) and metal stents (53+/-6% or 68+/-8%, P=0.029 and P=0.020) after 3 weeks or 3 months. Early complete endothelialisation was shown. Nevertheless, a local inflammatory response to the polylactide as a result of the polymer resorption process was observed. CONCLUSIONS: This novel polylactide stent showed sufficient mechanic stability, and by incorporation of paclitaxel, a significant potential to reduce restenosis development after vascular intervention was seen.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Reestenose Coronária/prevenção & controle , Paclitaxel/administração & dosagem , Poliésteres , Stents , Animais , Materiais Biocompatíveis , Reestenose Coronária/patologia , Implantes de Medicamento , Estudos de Viabilidade , Modelos Animais , Distribuição Aleatória , Suínos , Túnica Íntima/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA