Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Pharm ; 17(7): 2435-2450, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32459486

RESUMO

On-demand drug release nanoplatforms are promising alternative strategies for enhancing the therapeutic effect of cancer chemotherapy. However, these nanoplatforms still have many drawbacks including rapid blood clearance, nontargeted specificity, and a lack of immune escape function. Even worse, they are also hindered via the dosage-limiting toxicity of traditional chemotherapeutic drugs. Herein, both dual-functional mannose (enhances the antitumor activity of chemotherapeutic drugs and exhibits an innate affinity against the lectin receptor) and amphiphilic d-α-tocopheryl polyethylene glycol 1000 succinate were selected to be covalently linked via a redox-responsive monothioether linkage. The synthesized self-distinguished polymer (TSM), as a structural motif, can be self-assembled into nanoparticles (TSM NPs) in an aqueous solution, in which doxorubicin (DOX) is loaded by weak interactions (TSM-DOX NPs). These TSM-DOX NPs can provide targeted, on-demand drug release under dual stimuli from lysosomal acidity and glutathione (GSH). In addition, TSM-DOX NPs can be self-distinguished via tumor cells in vitro and specifically self-distinguished from the tumor site in vivo. Further in vitro and in vivo research consistently demonstrated that TSM-DOX NPs display highly synergistic chemotherapeutic effects. Taken together, the data show that the self-distinguished GSH-responsive polymer TSM has the potential to load various therapeutic agents.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células Hep G2 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células NIH 3T3 , Ratos , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
ACS Appl Mater Interfaces ; 14(4): 5033-5052, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35045703

RESUMO

Although nanotheranostics have displayed striking potential toward precise nanomedicine, their targeting delivery and tumor penetration capacities are still impeded by several biological barriers. Besides, the current antitumor strategies mainly focus on killing tumor cells rather than antiangiogenesis. Enlightened by the fact that the smart transformable self-targeting nanotheranostics can enhance their targeting efficiency, tumor penetration, and cellular uptake, we herein report carrier-free Trojan-horse diameter-reducible metal-organic nanotheranostics by the coordination-driven supramolecular sequential co-assembly of the chemo-drug pemetrexed (PEM), transition-metal ions (FeIII), and antiangiogenesis pseudolaric acid B. Such nanotheranostics with both a high dual-drug payload efficiency and outstanding physiological stability are responsively decomposed into numerous ultra-small-diameter nanotheranostics under stimuli of the moderate acidic tumor microenvironment and then internalized into tumor cells through tumor-receptor-mediated self-targeting, synergistically enhancing tumor penetration and cellular uptake. Besides, such nanotheranostics enable visualization of self-targeting capacity under the macroscopic monitor of computed tomography/magnetic resonance imaging, thereby realizing efficient oncotherapy. Moreover, tumor microvessels are precisely monitored by optical coherence tomography angiography/laser speckle imaging during chemo-antiangiogenic therapy in vivo, visually verifying that such nanotheranostics possess an excellent antiangiogenic effect. Our work will provide a promising strategy for further tumor diagnosis and targeted therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Estruturas Metalorgânicas/farmacologia , Neovascularização Patológica/tratamento farmacológico , Nanomedicina Teranóstica , Inibidores da Angiogênese/química , Antineoplásicos/química , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Teste de Materiais , Estruturas Metalorgânicas/química , Neovascularização Patológica/patologia , Tamanho da Partícula , Pemetrexede/química , Pemetrexede/farmacologia , Propriedades de Superfície
3.
Int J Pharm ; 594: 120184, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340597

RESUMO

D-a-tocopheryl polyethylene glycol succinate (TPGS) as a FDA-approved safe adjuvant has shown an excellent application in the targeting delivery of antitumor drugs and overcoming multidrug resistance. Beside, TPGS can result in apoptogenic activity toward many tumor types because it can induce mitochondrial dysfunction. Therefore, TPGS can serve as an antineoplastic agent. However, the current research on the selective antitumor activity of TPGS is ignored. To reveal the issue, herein we develop a mitochondria-targeting drug-free TPGS nanomicelles with the hydrodynamic diameter of about 100 nm and outstanding serum stability by weak interaction-driven self-assembly of the amphiphilic TPGS polymer. Moreover, such drug-free TPGS nanomicelles intravenously injected into tumor-bearing mice exhibit long blood circulation time, superior tumor enrichment, and inhibit the tumor growth via inducing excessive reactive oxygen species (ROS) generation within tumor cells. Further in vitro and in vivo researches jointly demonstrate that drug-free TPGS nanomicelles have more significant antitumor effect on HeLa cells compared with that of other tumor cells. On the contrary, drug-free TPGS nanomicelles display the low toxicity toward normal cells and tissues. Taken together, these new findings confirm that TPGS drug-free nanomicelles represent simple, multifunctional, safe, and efficient antineoplastic agents, which can be expected to bring new light on the development of drug-free polymers for tumor therapy.


Assuntos
Antineoplásicos , Polietilenoglicóis , Animais , Antineoplásicos/farmacologia , Morte Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Micelas , Mitocôndrias , Espécies Reativas de Oxigênio , Vitamina E
4.
Int J Nanomedicine ; 13: 1381-1398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563794

RESUMO

AIM: We designed acid-labile methotrexate (MTX) targeting prodrug self-assembling nanoparticles loaded with curcumin (CUR) drug for simultaneous delivery of multi-chemotherapeutic drugs and combination cancer therapy. METHODS: A dual-acting MTX, acting as both an anticancer drug and as a tumor-targeting ligand, was coupled to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethylene glycol)-2000] via Schiff's base reaction. The synthesized prodrug conjugate (DSPE-PEG-Imine-MTX) could be self-assembled into micellar nanoparticles (MTX-Imine-M) in aqueous solution, which encapsulated CUR into their core by hydrophobic interactions (MTX-Imine-M-CUR). RESULTS: The prepared MTX-Imine-M-CUR nanoparticles were composed of an inner hydrophobic DSPE/CUR core and an outside hydrophilic bishydroxyl poly (ethyleneglycol) (PEG) shell with a self-targeting MTX prodrug corona. The imine linker between 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethyleneglycol)-2000] and MTX, as a dynamic covalent bond, was strong enough to remain intact in physiological pH, even though it is rapidly cleaved in acidic pH. The MTX-Imine-M-CUR could codeliver MTX and CUR selectively and efficiently into the cancer cells via folate receptor-mediated endocytosis followed by the rapid intracellular release of CUR and the active form of MTX via the acidity of endosomes/lysosomes. Moreover, the MTX-Imine-M-CUR resulted in significantly higher in vitro and in vivo anticancer activity than pH-insensitive DSPE-PEGAmide-MTX assembling nanoparticles loaded with CUR (MTX-Amide-M-CUR), MTX unconjugated DSPE-PEG assembling micellar nanoparticles loaded with CUR (M-CUR), combination of both free drugs, and individual free drugs. CONCLUSION: The smart system provided a simple, yet feasible, drug delivery strategy for targeted combination chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Metotrexato/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Coloides , Curcumina/química , Curcumina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Hidrodinâmica , Concentração de Íons de Hidrogênio , Células MCF-7 , Metotrexato/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Tamanho da Partícula , Fosfatidiletanolaminas/síntese química , Fosfatidiletanolaminas/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Pró-Fármacos/farmacologia
5.
Int J Pharm ; 549(1-2): 230-238, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30071310

RESUMO

Poor water solubility, short half-life, and low drug efficacy posed a challenge for clinical application of curcumin (CUR). In this work, a kind of CUR prodrug was synthesized by coupling two CUR molecules with a mono-thioether linker for glutathione (GSH)-responsive drug delivery. The synthesized CUR prodrug (CUR-S-CUR dimer) could self-assemble into the homogeneous spherical nanoparticles (NPs) in aqueous solution followed by surface functionalization of trace amounts of DSPE-PEG. These CUR-S-CUR@PEG NPs exhibited a small particle size of ∼100 nm, high CUR-loading content of ∼78 wt%, and good colloid stability. Moreover, the CUR-S-CUR@PEG NPs demonstrated much more efficient cellular uptake and intracellular/nuclear drug delivery compared with free CUR, indicating the advantages of small molecular prodrug assembly. In addition, the GSH with high concentration in tumor cells could trigger the disassembly of CUR-S-CUR@PEG NPs. Furthermore, the cytotoxicity assays indicated that the CUR-S-CUR@PEG NPs exhibited the comparable inhibition effect of tumor cell proliferation with free CUR due to sustained drug release. Therefore, these stimuli-responsive CUR-S-CUR@PEG NPs might have promising potential for highly efficient intracellular drug delivery and controlled drug release in cancer therapy.


Assuntos
Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Glutationa/metabolismo , Nanopartículas , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica/métodos , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada , Portadores de Fármacos/química , Estabilidade de Medicamentos , Meia-Vida , Células HeLa , Humanos , Tamanho da Partícula , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Pró-Fármacos , Solubilidade
6.
Colloids Surf B Biointerfaces ; 160: 649-660, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031225

RESUMO

As one of nanomedicine delivery systems (NDSs), drug nanocrystals exhibited an excellent anticancer effect. Recently, differences of internalization mechanisms and subcellular localization of both drug nanocrystals and small molecular free drug have drawn much attention. In this paper, paclitaxel (PTX) as a model anticancer drug was directly labeled with 4-chloro-7-nitro-1, 2, 3-benzoxadiazole (NBD-Cl) (a drug-fluorophore conjugate Ma et al. (2016) and Wang et al. (2016) [1,2] (PTX-NBD)). PTX-NBD was synthesized by nucleophilic substitution reaction of PTX with NBD-Cl in high yield and characterized by fluorescence, XRD, ESI-MS, and FT-IR analysis. Subsequently, the cube-shaped PTX-NBD nanocrystals were prepared with an antisolvent method followed by surface functionalization of SPC and MPEG-DSPE. The obtained specific shaped PTX-NBD@PC-PEG NCs had a hydrodynamic particle size of ∼50nm, excellent colloidal stability, and a high drug-loading content of ∼64%. Moreover, in comparison with free PTX-NBD and the sphere-shaped PTX-NBD nanocrystals with surface functionalization of SPC and MPEG-DSPE (PTX-NBD@PC-PEG NSs), PTX-NBD@PC-PEG NCs remarkably reduced burst release and improved cellular uptake efficiency and in vitro cancer cell killing ability. In a word, the work highlights the potential of theranostic prodrug nanocrystals based on the drug-fluorophore conjugates for cell imaging and chemotherapy.


Assuntos
Nanopartículas/química , Paclitaxel/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Pró-Fármacos/química , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Nitrocompostos/química , Oxidiazóis/química , Paclitaxel/farmacologia , Pró-Fármacos/farmacologia , Glycine max/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanomedicina Teranóstica/métodos , Difração de Raios X
7.
Int J Nanomedicine ; 12: 4225-4239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652729

RESUMO

To design a rapid release liposomal system for cancer therapy, a NIR responsive bubble-generating thermosensitive liposome (BTSL) system combined with photothermal agent (Cypate), doxorubicin (DOX), and NH4HCO3 was developed. Cypate/DOX-BTSL exhibited a good aqueous stability, photostability, and photothermal effect. In vitro release suggested that the amounts of DOX released from BTSL were obviously higher than that of (NH4)2SO4 liposomes at 42°C. After NIR irradiation, the hyperthermic temperature induced by Cypate led to the decomposition of NH4HCO3 and the generation of a large number of CO2 bubbles, triggering a rapid release of drugs. Confocal laser scanning microscope and acridine orange staining indicated that Cypate/DOX-BTSL upon irradiation could facilitate to disrupt the lysosomal membranes and realize endolysosomal escape into cytosol, improving the intracellular uptake of DOX clearly. MTT and trypan blue staining implied that the cell damage of Cypate/DOX-BTSL with NIR irradiation was more severe than that in the groups without irradiation. In vivo results indicated that Cypate/DOX-BTSL with irradiation could dramatically increase the accumulation of DOX in tumor, inhibit tumor growth, and reduce systemic side effects of DOX. These data demonstrated that Cypate/DOX-BTSL has the potential to be used as a NIR responsive liposomal system for a rapid release of drugs in thermochemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hipertermia Induzida/métodos , Lipossomos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Bicarbonatos/química , Bicarbonatos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Feminino , Humanos , Indóis/química , Células MCF-7 , Camundongos Endogâmicos BALB C , Propionatos/química , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
8.
ACS Appl Mater Interfaces ; 9(45): 39127-39142, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29039650

RESUMO

Tumor-targeting combination chemotherapy is an important way to improve the therapeutic index and reduce the side effects as compared to traditional cancer treatments. However, one of the major challenges in surface functionalization of nanoparticle (NP) is accomplishing multiple purposes through one single ligand. Upon such consideration, methotrexate (MTX), an anticancer drug with a targeting moiety inspired by the similar structure of folate, could be used to covalently link with lipid-polymer conjugate (DSPE-PEG) via a pH-sensitive dynamic covalent imine (CH═N) bond to synthesize the acid-induced function "targeting-anticancer" switching DSPE-PEG-CH═N-MTX. We hypothesize that using this kind of MTX prodrug to functionalize NP's surface would be conductive to combine the early phase active targeting function and the late-phase anticancer function in one nanosystem. Herein, a nanococktail is programmed for codelivery of epirubicin (EPI) and MTX by co-self-assembly of acid-dissociated EPI-phospholipid (PC) complex and acid-cleavable DSPE-PEG-CH═N-MTX conjugate. The obtained nanococktail (MTX-PEG-EPI-PC NPs) could not only actively target folate receptors-overexpressing tumor cells but also respond to acidic endo/lysosomes for triggering the on-demand release of pharmaceutically active EPI/MTX. The intracellular drug distribution also demonstrated that the system could codeliver two drugs to individual target sites of action, inducing the significant synergistic anticancer efficiency based on different anticancer mechanisms. More importantly, the in vivo tumor accumulation and anticancer efficacy of MTX-PEG-EPI-PC NPs (via cleavable imine bond) were significantly enhanced as compared to the individual free drug, both free drugs, PEG-EPI-PC NPs, and MTX-PEG-EPI-PC NPs (via the uncleavable amide bond). This self-synergistic tumor-targeting therapy might represent a promising strategy for cancer treatment.


Assuntos
Neoplasias , Antineoplásicos , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Metotrexato , Nanopartículas , Polietilenoglicóis , Pró-Fármacos
9.
J Biomed Mater Res A ; 100(2): 396-405, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083844

RESUMO

Exogenous administration of growth factors has been identified as a potential therapeutic approach for healing wounds. A way to enhance the efficacy of growth factors would be to achieve spatiotemporal control over their delivery to desired sites for an extended period. In this study, we designed and prepared a kind of double-layered collagen membrane, a dense layer and a loose layer, which incorporated basic fibroblast growth factor (bFGF)-loaded chitosan-heparin nanoparticles. The nanoparticles were prepared by polyelectrolyte gelation process and then were sandwiched between the two layers of collagen membrane. The release of model protein human serum albumin (HSA) from the double-layered membrane was tracked by radio-label assay, and the bioactivity of the growth factor on fibroblast cell (L929) was evaluated by MTT assay. The release of protein displayed a spatiotemporal control model and its release in undesired direction was lessened. The bFGF maintained the bioactivities after release from the membranes. Moreover, different release amounts of bFGF from the different layers of the membrane induced significant difference in cell proliferation when the cells were seeded on the different layers of membrane in vitro. This kind of double-layered collagen membrane could have potential applications in the field of tissue repair due to the spatiotemporal control over growth factor delivery, the mild fabrication conditions, and the simple processes.


Assuntos
Colágeno/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Membranas Artificiais , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Heparina/química , Humanos , Radioisótopos do Iodo , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Albumina Sérica/metabolismo , Eletricidade Estática , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA