Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 204: 111112, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798756

RESUMO

Compared with conventional methods for organic pollutant degradation, photocatalysis is a promising treatment technology with broad application prospects. Bi2O2CO3 is often used for organic pollutants degradation but greatly restricted by having drawbacks of large band gap and high electron-hole recombination rate. Herein, heterostructured Bi2O2CO3 (BOC)/reduced graphene oxide (rGO)/polydopamine (PDA) (BGP) photocatalysts were first designed through a green chemical method. By incorporating rGO and PDA in BOC, the kinetic constant of BGP to catalytically degrade methyl orange (MO) was significantly increased; over fourfold elevated rather than that of BOC (kapp/BOC = 0.0019, kapp/BGP = 0.0089) due to the high electron transfer capability of rGO and superior adhesive force and semiconducting properties of PDA. DRS and photoelectrochemical results confirmed the improvement of the light absorption range and charge transfer capability because of the synergistic effect of rGO and PDA. Results of trapping experiment and ESR unraveled the catalytic mechanism that both holes (h+) and superoxide radicals (•O2-) were the main oxidative species for MO degradation. Economic assessment results demonstrated that Bi2O2CO3/rGO/PDA heterojunctions have great potentials in the field of organic wastewater purification. This study developed a low-cost and highly efficient BGP material and provided a deep understanding of the structure-performance relationships of materials for organic pollutant degradation.


Assuntos
Processos Fotoquímicos , Eliminação de Resíduos Líquidos/métodos , Compostos Azo , Catálise , Poluentes Ambientais , Grafite , Química Verde , Indóis , Oxirredução , Polímeros , Águas Residuárias
2.
J Hazard Mater ; 424(Pt A): 127208, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592591

RESUMO

Halloysite nanotubes (HNTs) are considered structurally promising adsorption materials, but their application is limited due to their poor native adsorption properties. Improving the adsorption capacity of HNTs for radioactive U(VI) is of great significance. By controlling the mass ratio of HNTs and dopamine (DA), composite adsorbents (HNTs@PDA) with different polydopamine (PDA) layer thicknesses were synthesized. Characterization of HNTs@PDA demonstrated that the original structure of the HNTs was maintained. Adsorption experiments verified that the adsorption capacity of HNTs@PDA for U(VI) was significantly improved. The effects of solution pH, temperature, and coexisting ions on the adsorption process were investigated. The removal efficiency was observed to be 75% after five repeated uses. The adsorption mechanism of U(VI) by HNTs@PDA can be explained by considering electrostatic interactions and the complexation of C-O, -NH- and C-N/CN in the PDA layer. This study provides some basic information for the application of HNTs for U(VI) removal.


Assuntos
Nanotubos , Urânio , Argila , Indóis , Polímeros
3.
Chemosphere ; 280: 130626, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162068

RESUMO

Nano zero-valent iron (nZVI) is widely used for decontamination. The main issues associated with nZVI are agglomeration and oxidation in the long term. In this study, the carbothermal reduction of cotton fiber was conducted for the synthesis of nZVI supported on cotton carbon fiber (nZVI/CF) to address the agglomeration and oxidation of nZVI. Synergistic adsorption and peroxymonosulfate (PMS) activation using nZVI/CF for removing levofloxacin (LEV) are reported herein. The nZVI concentration and morphology were conveniently adjusted by soaking cotton fiber in ferric nitrate solutions of various Fe3+ concentrations. The carbothermal reduction of the cotton fiber at 900 °C contributed to the reduction of Fe3+ into nZVI. A nZVI/CF-900-0.3 system was obtained through the carbothermal reduction of cotton fiber soaked in 0.3 M ferric nitrate. Favorable adsorption of nZVI/CF-900-0.3 to LEV facilitated LEV degradation under PMS activation. Approximately 93.83% of LEV (C0 = 20 ppm) was removed within 60 min with 0.2 g/L of the catalyst and 1 mM PMS. It was preferable to use nZVI + CF-900 to activate PMS for degrading LEV, thus confirming the favorable effect of LEV adsorption on further degradation. The nZVI/CF-900-0.3 exhibited excellent long-term stability given that it was able to activate PMS after it was stored for 6 months. ·SO4- played an important role in LEV degradation in the presence of PMS.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Fibra de Carbono , Levofloxacino , Peróxidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA