Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 125954, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492872

RESUMO

Biodegradable (Bio) plastic films are widely viewed as promising alternative products of low-density polyethylene (LDPE) films to minimize plastic debris accumulation and pollution in agroecosystems. Yet, this speculation indeed lacks of sufficient evidences. We conducted a landfill investigation on the aging characteristics of Bio and LDPE plastic films in maize field, and the effects on soil aggregate composition and carbon & nitrogen stocks. The degradation rate of Bio film was up to 41.1% while that of LDPE film was zero. Scanning electron microscope (SEM) showed that the crack formation of Bio film had a pronounced domino effect, and FTIR showed that old Bio film displayed an extra wide peak threshold ranging from 3000 to 3500 cm-1. Particularly, the abundance of microplastics was elevated with the increased plastic residues, and the increment mostly resulted from Bio residues. Critically, plastic residues significantly lowered the soil macro-aggregates (>0.25 mm) proportion, while increasing that of micro-aggregates (0.1-0.25 mm) in LDPE, and silt/clay fraction (<0.1 mm) in Bio respectively. They significantly promoted total nitrogen content of the aggregates with the same size, but decreased the organic carbon content, dramatically lowering the C/N. Therefore, we first identified the fate of plastic film residues in agroecosystems and revealed the serious deficiencies of Bio plastic film.


Assuntos
Plásticos Biodegradáveis , Solo , Agricultura , Carbono , Ecossistema , Nitrogênio , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA