Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622792

RESUMO

Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.


Assuntos
Fungos/metabolismo , Lignina/metabolismo , Redes e Vias Metabólicas , Biopolímeros/metabolismo , Biotransformação , Ecossistema , Compostos Orgânicos/metabolismo , Microbiologia do Solo
2.
Proc Natl Acad Sci U S A ; 109(43): 17501-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045686

RESUMO

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ß-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Assuntos
Adaptação Fisiológica/genética , Agaricus/genética , Ecologia , Genoma Fúngico , Agaricus/metabolismo , Agaricus/fisiologia , Evolução Molecular , Lignina/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22434909

RESUMO

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Assuntos
Basidiomycota/genética , Genômica , Lignina/metabolismo , Basidiomycota/classificação , Hidrólise , Dados de Sequência Molecular , Oxirredução , Filogenia , Especificidade da Espécie
4.
Fungal Genet Biol ; 55: 22-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23583597

RESUMO

The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three putative glyoxal oxidase-encoding genes (GLXs)], 12 laccases sensu stricto and 109 cytochrome P450 monooxygenases. Comparative analyses of these enzymes in Ab with those of the white-rot fungus, Phanerochaete chrysosporium, the brown-rot fungus, Postia placenta, the coprophilic litter fungus, Coprinopsis cinerea and the ectomychorizal fungus, Laccaria bicolor, revealed enzyme diversity consistent with adaptation to substrates rich in humic substances and partially degraded plant material. For instance, relative to wood decay fungi, Ab cytochrome P450 genes were less numerous (109 gene models), distributed among distinctive families, and lacked extensive duplication and clustering. Viewed together with P450 transcript accumulation patterns in three tested growth conditions, these observations were consistent with the unique Ab lifestyle. Based on tandem gene arrangements, a certain degree of gene duplication seems to have occurred in this fungus in the copper radical oxidase (CRO) and the laccase gene families. In Ab, high transcript levels and regulation of the heme-thiolate peroxidases, two manganese peroxidases and the three GLX-like genes are likely in response to complex natural substrates, including lignocellulose and its derivatives, thereby suggesting an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest a developmental role in this fungus. Based on these observations, a brief comparative genomic overview of the Ab oxidative enzyme machinery is presented.


Assuntos
Agaricus/enzimologia , Agaricus/genética , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Oxirredutases/genética , Biotransformação , Biologia Computacional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Variação Genética , Genoma Fúngico , Oxirredutases/metabolismo
5.
Proc Natl Acad Sci U S A ; 106(6): 1954-9, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19193860

RESUMO

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.


Assuntos
Perfilação da Expressão Gênica , Genoma Fúngico , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Polyporales/genética , Sequência de Bases , Evolução Biológica , Celulases , Enzimas/genética , Glicosídeo Hidrolases , Dados de Sequência Molecular , Oxirredutases , Polyporales/metabolismo , Madeira/metabolismo
6.
Curr Microbiol ; 61(4): 306-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20221604

RESUMO

With an aim to understand the cytochrome P450 enzyme system in the white rot fungus Phanerochaete chrysosporium, here we report molecular characterization of its P450 redox proteins including the primary P450 oxidoreductase (POR) and two alternate P450 redox proteins cytochrome b5 (cyt b5) and cytochrome b5 reductase (cyt b5r) in terms of transcriptional regulation and heterologous expression. The transcript abundance followed the order POR > cyt b5r > cyt b5. Interestingly, the three genes showed an overall higher expression in the defined carbon-limited cultures with low nitrogen (LN) or high nitrogen (HN) versus the carbon-rich malt extract (ME) cultures. cDNA cloning and analysis revealed the following deduced protein characteristics: cyt b5 (238 amino acids, 25.38 kDa) and cyt b5r (321 amino acids, 35.52 kDa). Phylogenetic analysis revealed that the cloned cyt b5 belongs to a novel class of fungal cyt b5-like proteins. The two proteins cyt b5 and cyt b5r were heterologously expressed in E. coli and purified using affinity-based purification in an active form. The POR was heterologously expressed in Saccharomyces cerevisiae and was also purified in active form as evidenced by its cytochrome c reduction activity. This is the first report on cloning, heterologous expression, and purification of the alternate redox proteins cyt b5 and cyt b5r in E. coli and on yeast expression of POR from this model white rot fungus.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas , Phanerochaete/enzimologia , Phanerochaete/genética , Carbono , Clonagem Molecular , Meios de Cultura , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/isolamento & purificação , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/genética , Citocromos b5/isolamento & purificação , Citocromos b5/metabolismo , DNA Complementar , Poluentes Ambientais/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Duplicação Gênica , Expressão Gênica , Genoma Fúngico , Lignina/metabolismo , Dados de Sequência Molecular , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/isolamento & purificação , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Nitrogênio , Oxirredução , Phanerochaete/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica
7.
Biotechnol Biofuels ; 10: 34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184247

RESUMO

BACKGROUND: The industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenable marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a "ribosomal skip" generating two (or more) independent gene products. When the 2A peptide is translated, the "skip" occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein. RESULTS: Co-expression of Cel7A and eGFP via the FMDV 2A peptide sequence resulted in successful expression of both test proteins in T. reesei. Separation of these two polypeptides via the modified 2A peptide was ~100% efficient. The Cel7A was efficiently secreted, whereas the eGFP remained intracellular. Both proteins were expressed when cloned in either order, i.e., Cel7A-2A-eGFP (C2G) or eGFP-2A-Cel7A (G2C); however, eGFP expression and/or functionality were dependent upon the order of transcription. Specifically, expression of Cel7A was linked to eGFP expression in the C2G orientation, whereas expression of Cel7A could not be reliably correlated to eGFP fluorescence in the G2C construct. Whereas eGFP stability and/or fluorescence were affected by gene order, Cel7A was expressed, secreted, and exhibited the expected functionality in both the G2C and C2G orientations. CONCLUSIONS: We have successfully demonstrated that two structurally unrelated proteins can be expressed in T. reesei using the FMDV 2A peptide approach; however, the order of the genes can be important. The addition of a single proline to the N terminus of eGFP in the C2G orientation did not appear to affect fluorescence, which correlated well with Cel7A expression. The addition of 21 amino acids to the C terminus of eGFP in the G2C orientation, however, appeared to severely reduce fluorescence and/or stability, which could not be linked with Cel7A expression. The molecular biology tool that we have implemented in this study will provide an efficient strategy to test the expression of heterologous proteins in T. reesei, while also providing a novel platform for developing this fungus as an efficient multi-protein-expressing host using a single polycistronic gene expression cassette. An additional advantage of this system is that the co-expressed proteins can be theoretically produced at equimolar ratios, as (A) they all originate from a single transcript and (B) unlike internal ribosome entry site (IRES)-mediated polycistronic expression, each cistron should be translated equimolarly as there is no ribosomal dissociation or reloading between cistrons.

8.
Curr Microbiol ; 50(6): 292-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15968506

RESUMO

In order to characterize the functional diversity in CYP63 cluster of tandemly linked P450 genes (pc-1, pc-2, and pc-3) in Phanerochaete chrysosporium, here we report the functional characterization of pc-3 (CYP63A3), a newly cloned member of this group. pc-3 expression was favored in nutrient-limited versus nutrient-rich media in 3-6-day-old cultures and was upregulated by starch as a carbon source or by oxygenation of cultures. pc-3 was induced by various xenobiotics in defined nutrient-limited (3-9-fold) and nutrient-rich (2-5-fold) cultures. Particularly, a range of unsubstituted and substituted aliphatic hydrocarbons (alkanes and fatty acids) induced the expression under the two nutrient conditions albeit in a differential manner. Interestingly, pc-3 was also inducible by certain oxygenated mono aromatics (nitrophenol, benzoate, and resorcinol), lower molecular weight (2 to 4 ring size) polycyclic aromatic hydrocarbons (PAHs) and alkali-treated lignin derivatives in nutrient-rich malt extract cultures. The study further establishes that the three CYP63 genes (CYP63A1, A2, and A3) are independently regulated despite being members of the tandem gene cluster with high gene structural similarity (13-14 introns) and protein sequence homology (59-85%). The pc-3 cDNA (1,812 bp) was expressed in E. coli as a His-tagged protein (approximately 74 kDa). This constitutes the first report on heterologous expression of a P450 monooxygenase enzyme from this model white-rot fungus.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Regulação Enzimológica da Expressão Gênica , Phanerochaete/efeitos dos fármacos , Phanerochaete/enzimologia , Xenobióticos/farmacologia , Adaptação Fisiológica , Sequência de Aminoácidos , Meios de Cultura , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Indução Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Fúngica da Expressão Gênica , Hidrocarbonetos Aromáticos/farmacologia , Lignina/farmacologia , Dados de Sequência Molecular , Família Multigênica , Phanerochaete/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA