Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(9): 6190-9, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26830466

RESUMO

Copper nanowire (CuNW) conductors have been considered to have a promising perspective in the area of stretchable electronics due to the low price and high conductivity. However, the fabrication of CuNW conductors suffers from harsh conditions, such as high temperature, reducing atmosphere, and time-consuming transfer step. Here, a simple and rapid one-step photonic sintering technique was developed to fabricate stretchable CuNW conductors on polyurethane (PU) at room temperature in air environment. It was observed that CuNWs were instantaneously deoxidized, welded and simultaneously embedded into the soft surface of PU through the one-step photonic sintering technique, after which highly conductive network and strong adhesion between CuNWs and PU substrates were achieved. The CuNW/PU conductor with sheet resistance of 22.1 Ohm/sq and transmittance of 78% was achieved by the one-step photonic sintering technique within only 20 µs in air. Besides, the CuNW/PU conductor could remain a low sheet resistance even after 1000 cycles of stretching/releasing under 10% strain. Two flexible electronic devices, wearable sensor and glove-shaped heater, were fabricated using the stretchable CuNW/PU conductor, demonstrating that our CuNW/PU conductor could be integrated into various wearable electronic devices for applications in food, clothes, and medical supplies fields.


Assuntos
Cobre/química , Eletrônica , Nanofios/química , Dimetilpolisiloxanos/química , Eletrodos , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Nanofios/ultraestrutura , Fótons , Poliuretanos/química , Temperatura
2.
Nanoscale ; 7(7): 2926-32, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25588044

RESUMO

The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa(-1). The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected.


Assuntos
Nanopartículas Metálicas/química , Monitorização Ambulatorial/instrumentação , Nanotecnologia/métodos , Nanofios/química , Prata/química , Braço , Elasticidade , Elastômeros , Capacitância Elétrica , Eletrodos , Eletrônica , Desenho de Equipamento , Dedos , Humanos , Perna (Membro) , Teste de Materiais , Polietilenotereftalatos/química , Pressão , Reprodutibilidade dos Testes , Robótica , Sensibilidade e Especificidade , Pele Artificial , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA