Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 17(5): 576-584, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664521

RESUMO

Cariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity to form biofilms. From strains of S. mutans isolated from dental plaque, we discovered, in the present study, a polyketide/nonribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identified the muf-associated bioactive product, mutanofactin-697, which contains a new molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies revealed that mutanofactin-697 binds to S. mutans cells and also extracellular DNA, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provided an example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the importance of secondary metabolism in mediating critical processes related to the development of dental caries.


Assuntos
Biofilmes/efeitos dos fármacos , Fatores Biológicos/biossíntese , Genes Bacterianos , Metabolismo Secundário/genética , Streptococcus mutans/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fatores Biológicos/isolamento & purificação , Fatores Biológicos/farmacologia , Biologia Computacional/métodos , DNA/genética , DNA/metabolismo , Cárie Dentária/microbiologia , Cárie Dentária/patologia , Regulação Bacteriana da Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Família Multigênica , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Ligação Proteica , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/patogenicidade
2.
Mol Pharm ; 20(5): 2642-2649, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043673

RESUMO

Liposomes (lipos), one of the most successful nanotherapeutics in the clinic, have made a rapid advance over the past few years. However, still, several challenges exist for lipos for clinical practice, such as low drug loading and premature drug leakage during in vivo circulation. Paclitaxel (PTX), a commonly used first-line drug for cancer chemotherapy, was chosen as the model drug. Due to its non-ionizable and water-insoluble characteristics, the drug-loading efficiency of the marketable PTX lipos, Lipusu, is only 6.76%. Herein, we designed an ionizable PTX prodrug (PTXP) by modifying phenylboronic acid on the C2' hydroxyl group of PTX for the remote loading of liposomal formulations through the pH gradient method. Compared with Lipusu, PTXP lipos displayed a 34% higher loading efficiency and an encapsulation efficiency of approximately 95%. A series of in vitro/vivo experiments indicated that PTXP lipos possess colloidal stability, prolonged blood circulation, high tumor site accumulation, potent anti-tumor effects, and safety. A combination of ionizable prodrugs and remote loading has proved to be an effective and simple strategy to achieve high liposomal encapsulation efficiency of poorly soluble non-ionizable drugs for clinical application.


Assuntos
Neoplasias da Mama , Pró-Fármacos , Humanos , Feminino , Lipossomos , Linhagem Celular Tumoral , Paclitaxel/uso terapêutico , Neoplasias da Mama/tratamento farmacológico
3.
Nano Lett ; 22(3): 1415-1424, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35072479

RESUMO

The current state of antitumor nanomedicines is severely restricted by poor penetration in solid tumors. It is indicated that extracellular vesicles (EVs) secreted by tumor cells can mediate the intercellular transport of antitumor drug molecules in the tumor microenvironment. However, the inefficient generation of EVs inhibits the application of this approach. Herein, we construct an EV-mediated self-propelled liposome containing monensin as the EV secretion stimulant and photosensitizer pyropheophorbide-a (PPa) as a therapeutic agent. Monensin and PPa are first transferred to the tumor plasma membrane with the help of membrane fusogenic liposomes. By hitchhiking EVs secreted by the outer tumor cells, both drugs are layer-by-layer transferred into the deep region of a solid tumor. Particularly, monensin, serving as a sustainable booster, significantly amplifies the EV-mediated PPa penetration by stimulating EV production. Our results show that this endogenous EV-driven nanoplatform leads to deep tumor penetration and enhanced phototherapeutic efficacy.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Lipossomos/metabolismo , Monensin/metabolismo , Monensin/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Microambiente Tumoral
4.
Nano Lett ; 22(7): 3141-3150, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35318846

RESUMO

The pivotal factors affecting the survival rate of patients include metastasis and tumor recurrence after the resection of the primary tumor. Anti-PD-L1 antibody (aPD-L1) has promising efficacy but with some side effects for the off-target binding between aPD-L1 and normal tissues. Here, inspired by the excellent targeting capability of platelets with respect to tumor cells, we propose bioengineered platelets (PDNGs) with inner-loaded doxorubicin (DOX) and outer-anchored aPD-L1-cross-linked nanogels to reduce tumor relapse and metastatic spread postoperation. The cargo does not impair the normal physiological functions of platelets. Free aPD-L1 is cross-linked to form nanogels with a higher drug-loading efficiency and is sustainably released to trigger the T-cell-mediated destruction of tumor cells, reversing the tumor immunosuppressive microenvironment. PDNGs can reduce the postoperative tumor recurrence and metastasis rate, prolonging the survival time of mice. Our findings indicate that bioengineered platelets are promising in postsurgical cancer treatment by the tumor-capturing and in situ microvesicle-secreting capabilities of platelets.


Assuntos
Plaquetas , Melanoma , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Camundongos , Nanogéis , Recidiva Local de Neoplasia , Microambiente Tumoral
5.
Anaerobe ; 75: 102533, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35143955

RESUMO

OBJECTIVES: Biofilm formation on dental implant surfaces can cause peri-implant mucositis and peri-implantitis. Lectins are involved in interactions between bacteria or between bacteria and their hosts. Disrupting these interactions via specific sugars can result in reduced adhesion and biofilm formation. The purpose of this study was to identify sugars that function as antiadhesion or antibiofilm agents on titanium discs. METHODS: Of the sugars tested, the sugars that did not affect the planktonic growth of Streptococcus oralis, Fusobacterium nucleatum, and Porphyromonas gingivalis were selected. The selected sugars were assessed for their ability to inhibit biofilm formation of bacteria in single and consortium species by crystal violet staining, confocal laser scanning microscopy after live/dead staining, and scanning electron microscopy. The sugars were evaluated for their ability to inhibit activity of the quorum sensing molecule autoinducer 2 (AI-2) by bioluminescence assay. RESULTS: Biofilm formation of single bacteria or consortia of S. oralis, F. nucleatum, and P. gingivalis on titanium discs was significantly inhibited in the presence of d-arabinose. Pretreating titanium discs with d-arabinose for 3 min inhibited biofilm formation at a level comparable to that observed when d-arabinose was present over the entire period, suggesting that d-arabinose had initial anti-adhesive activity. In addition, d-arabinose inhibited the activity of AI-2. CONCLUSIONS: d-Arabinose may be a good candidate for application as an antibiofilm agent and AI-2 inhibitor.


Assuntos
Peri-Implantite , Titânio , Arabinose/farmacologia , Biofilmes , Fusobacterium nucleatum , Humanos , Porphyromonas gingivalis , Titânio/farmacologia
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054803

RESUMO

Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.


Assuntos
Eletrônica , Polímeros/química , Reação de Cicloadição , Elastômeros/química , Ligação de Hidrogênio
7.
J Mater Sci Mater Med ; 32(1): 8, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33471211

RESUMO

Intervertebral disc (IVD) degeneration is one of the most important causes of lower back pain. Tissue engineering provides a new method for the experimental treatment of degenerative disc diseases. This study aims to develop a natural, acellular, 3D interconnected porous scaffold derived from the extracellular matrix (ECM) of nucleus pulposus. The nucleus pulposus (NP) was decellularized by sequential detergent-nuclease methods, including physical crushing, freeze-drying and cross-linking. These 3D porous scaffolds were fabricated with a high porosity of (81.28 ± 4.10)%, an ideal pore size with appropriate mechanical properties. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were seeded and cultured on the scaffolds. And the mechanical tests showed the compressive elastic modulus of the scaffolds cultured for 4 weeks reached 0.12 MPa, which was better than that of the scaffolds cultured for 2 weeks (0.07 MPa) and that of the control group (0.04 MPa). Scanning electron microscopy (SEM), histological assays, molecular biology assays revealed that the scaffolds could provide an appropriate microstructure and environment for the adhesion, proliferation, migration and secretion of seeded cells in vitro. As assays like histology, immunohistochemistry and the real-time qRT-PCR showed, NP-like tissues were preliminarily formed. In conclusion, the 3D porous scaffold derived from NP ECM is a potential biomaterial for the regeneration of NP tissues. A natural, acellular, 3D interconnected porous scaffold derived from the extracellular matrix (ECM) of nucleus pulposus was developed by sequential detergent-nuclease and freeze-drying method, which can reduce the damage of protein activity to the minimum. It is very similar to the composition and internal environment of the natural nucleus pulposus, because it derived from the natural nucleus pulposus. Scanning electron microscopy (SEM), histological assays, molecular biology assays revealed that the scaffolds could provide an appropriate microstructure and environment for the adhesion, proliferation, migration, and secretion of seeded cells in vitro.


Assuntos
Biomimética , Núcleo Pulposo/metabolismo , Animais , Materiais Biocompatíveis/metabolismo , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Matriz Extracelular , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Porosidade , Pressão , Coelhos , Estresse Mecânico , Sais de Tetrazólio/química , Tiazóis/química , Engenharia Tecidual/métodos , Alicerces Teciduais
8.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502270

RESUMO

Implant topography affects early peri-implant bone healing by changing the osteoconduction rate in the surrounding biological environment. Implant surfaces have been designed to promote faster and stronger bone formation for rapid and stable prosthesis loading. Early peri-implant bone healing has been observed with a sandblasted, acid-etched implant that was chemically modified to be hydrophilic (cmSLA). The present study investigates whether early peri-implant bone healing extends to a rough surface implant with a high crystalline hydroxyapatite surface (TSV MP-1 HA). Three implants were randomly placed in porous trabecular bone within both medial femoral condyles of 10 sheep. Early peri-implant bone stability was measured at 3- and 6-weeks healing time following implant insertion. Results indicated a similar implant stability quotient between the implants at insertion and over time. The significant increase over time of reverse torque values with respect to insertion torque (p < 0.001) did not differ between the implants. However, the bone-to-implant contact of TSV MP-1 HA was significantly higher than that of cmSLA implants at 6 weeks (p < 0.01). These data validate previous findings of a hydrophilic implant surface and extend the observation of early osseointegration to a rough surface implant in porous trabecular bone.


Assuntos
Regeneração Óssea , Durapatita/química , Durapatita/farmacologia , Animais , Interface Osso-Implante/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Modelos Animais , Próteses e Implantes , Ovinos , Propriedades de Superfície , Torque
9.
Biomacromolecules ; 21(7): 2844-2855, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32496043

RESUMO

Designing smart scaffolds to reduce administration dosage under the premise of functional healing of bone defects to avoid the severe side effects associated with BMP-2 treatments is one of the essential goals in bone tissue engineering. Here, we report a novel biodegradable PLGA/PSBMA composite as the scaffold for bone tissue engineering. The introduction of zwitterionic PSBMA components can alter the intrinsic burst degradation behavior of PLGA and enable a sustained degradation of the scaffold over the time. The PLGA/PSBMA scaffold can sequester rhBMP-2 and enable a sustained release of the sequestered rhBMP-2 with preserved bioactivity. Furthermore, PLGA/PSBMA scaffolds were able to guide robust healing of critical-sized nonunion calvarial defects (5 mm) at an ultralow dose of 400 ng/scaffold, at which level successful healing of critical-sized bone defects has never been reported. These findings indicate the PLGA/PSBMA scaffolds as novel high-efficiency rhBMP-2 delivery vehicles for bone tissue engineering, and the concept of utilizing the material, which is capable of maintaining the bioactivity of the proteins in the preparation of scaffolds, may open a new avenue for the design of smart scaffolds/vehicles for high-efficiency protein/bioactive drug therapies.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Proteína Morfogenética Óssea 2 , Osso e Ossos , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Proteínas Recombinantes , Engenharia Tecidual
10.
J Sci Food Agric ; 100(2): 794-802, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31612484

RESUMO

BACKGROUND: Low-sodium sausages were manufactured using sodium substitution and biopolymer encapsulation. A diet comprising 10% treatment sausages (six treatment groups: C (100% NaCl), T1 (55% sodium substitute + 45% saltwort salt), T2 (55% sodium substitute + 45% saltwort salt with chitosan), T3 (55% sodium substitute + 45% saltwort salt with cellulose), T4 (55% sodium substitute + 45% saltwort salt with dextrin), and T5 (55% sodium substitute + 45% saltwort salt with pectin)) was added to a 90% commercial mouse diet for 4 weeks. RESULTS: Subacute toxicity, hematology, liver function, and organ weight tests in low-sodium sausage groups showed results similar to those of the control group, and all toxicity test levels were within normal ranges. CONCLUSIONS: All low-sodium sausage types tested are suggested to be safe in terms of subacute toxicity. Moreover, low-sodium sausages can be manufactured by biopolymer encapsulation of saltwort using pectin, chitosan, cellulose, and dextrin without toxicity. © 2019 Society of Chemical Industry.


Assuntos
Biopolímeros/análise , Aditivos Alimentares/análise , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Salsola/química , Sódio/análise , Animais , Biopolímeros/metabolismo , Biopolímeros/toxicidade , Celulose/análise , Celulose/metabolismo , Celulose/toxicidade , Quitosana/análise , Quitosana/metabolismo , Quitosana/toxicidade , Feminino , Aditivos Alimentares/metabolismo , Aditivos Alimentares/toxicidade , Manipulação de Alimentos/instrumentação , Masculino , Produtos da Carne/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Salsola/metabolismo , Salsola/toxicidade , Sódio/metabolismo , Sódio/toxicidade , Suínos
11.
Arch Biochem Biophys ; 646: 72-79, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621521

RESUMO

The deregulation of Bcl2L12 expression in cancer has been recognized, but the causative factors are unknown. Histone acetyltransferases (HAT) play critical roles in the regulation gene transcription. This study tests a hypothesis that the aberrant activities of HAT induce deregulation of Bcl2L12 in nasopharyngeal cancer (NPC). In this study, human NPC tissues were collected from the clinic. The expression of Bcl2L12 and HATs in NPC cells was analyzed by real time RT-PCR and Western blotting. NPC cell apoptosis was analyzed by flow cytometry. The results showed that by screening the subtypes of HAT, the levels of HAT1 were uniquely higher in NPC as compared with non-cancer nasopharyngeal tissue. The levels of Bcl2L12 in NPC cells were positively correlated with HAT1. HAT1 involved in the STAT5 binding to the Bcl2L12 promoter. HAT1 increased the expression of Bcl2L12. Bcl2L12 mediated the effects of HAT1 on suppressing NPC cell apoptosis. Absorption of the HAT1 shRNA plasmid-carrying liposomes induced NPC cell apoptosis. In conclusion, inhibition of HAT1 can induce NPC cell apoptosis via increasing Bcl2L12 expression, which can be a potential therapy for NPC treatment.


Assuntos
Histona Acetiltransferases/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adulto , Apoptose/genética , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Lipossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Neoplasias Nasofaríngeas/genética , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/genética , Fator de Transcrição STAT5/metabolismo , Regulação para Cima
12.
J Nanosci Nanotechnol ; 18(4): 2325-2329, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442899

RESUMO

Gliomas are the most common type of intracranial malignant tumor; however, current treatment approaches are often ineffective due to limited penetration of genes or drugs through the blood-brain barrier (BBB). Here we describe the synthesis of gelatin-siloxane nanoparticles (GS NPs) as candidate gene carriers through a two-step sol-gel process. To increase the efficiency of glioma targeting, human immunodeficiency virus-derived Tat, tumor-targeting aptamer (TTA)1, and polyethylene glycol (PEG) were conjugated to the GS NPs to generate Tat-TTA1-PEG-GS NPs. In vivo imaging revealed that these modified NPs not only evaded capture by the reticulo-endothelial system, but were able to cross the BBB to reach gliomas. Our results suggest that Tat-TTA1-PEG-GS NPs are a new type of non-viral vector that can deliver therapeutic DNA or drugs for highly efficient glioma treatment.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Gelatina/administração & dosagem , Glioma/tratamento farmacológico , Nanopartículas , Barreira Hematoencefálica , Linhagem Celular Tumoral , Humanos , Peptídeos , Polietilenoglicóis , Siloxanas
13.
Proc Natl Acad Sci U S A ; 112(45): 13988-93, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508632

RESUMO

Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Drosophila/genética , Epigênese Genética/fisiologia , Heterocromatina/fisiologia , Aprendizagem/fisiologia , Animais , Sequência de Bases , Western Blotting , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Drosophila/fisiologia , Heterocromatina/genética , Imunoprecipitação , Dados de Sequência Molecular , Octoxinol , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Salivares/anatomia & histologia , Glândulas Salivares/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Mol Pharm ; 14(8): 2781-2792, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28661679

RESUMO

Tautomeric curcumin amorphous solid dispersions (Cur ASDs) formulated with various typical polymers (polyethylene glycol 6000 (PEG), polyvinylpyrrolidone K30 (PVP), Eudragit EPO (EuD), EuD/hydroxypropylmethyl cellulose E50 (HPMC), and PVP/EuD) were probed using in situ Raman imaging plus spectroscopy and molecular modeling techniques, and dissolution mechanism of Cur ASDs were revealed mainly through molecular and interfacial interactions formed between Cur and polymer. The results demonstrated that Cur of keto form existed in Cur-PEG, Cur of enol form was shown in Cur-PVP, while Cur-EuD or Cur ASDs formulated with EuD as component had Cur of keto form and enol form. Hydrogen bond interactions were formed between OH group (PEG, HPMC) with C═O (Cur), and C═O (PVP or EuD) with the OH group (Cur). For Cur ASDs formulated with single polymer, the existed form of Cur was possibly related with the molecular interactions formed between drug and polymer. The wetting effect of excipient and Cur ASDs as well as their fitting equations of contact angle profiles should be seriously considered when analyzing the dissolution mechanism of Cur ASDs. Furthermore, dissolution of Cur-EuD with erosion dissolution pattern was higher than Cur-PVP with diffusion mechanism, and their crystallization pathway can ascribe to solution pathway and solid matrix pathway, respectively. Last but not least, turbidimetry method was effective in determining which excipient was superior and evaluating the function of polymers, including their abilities to improve amorphous Cur loading, drug dissolution, and supersaturation levels. Therefore, both the probing of tautomeric Cur in ASDs at intermolecular level and elucidation of its dissolution mechanism has tremendous value.


Assuntos
Curcumina/química , Polímeros/química , Cristalização , Liberação Controlada de Fármacos , Solubilidade
15.
Nanomedicine ; 13(3): 987-998, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27890657

RESUMO

Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Ácido Glutâmico/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Nanopartículas/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Portadores de Fármacos/química , Feminino , Ácido Glutâmico/química , Células HeLa , Humanos , Ácido Láctico/química , Ácido Láctico/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
16.
J Oral Maxillofac Surg ; 75(10): 2135-2143, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28412267

RESUMO

PURPOSE: Pamidronate disodium-associated bone necrosis is poorly understood at the cellular and molecular levels. This study proposes a pathway leading to the pamidronate disodium-mediated inhibition of osteogenic differentiation of human bone marrow mesenchymal stem cells (BMMSCs) derived from the mandible in vitro. MATERIALS AND METHODS: Primary human BMMSCs were isolated from the mandible and marrow tissue. A proliferation assay was performed to determine the experimental concentration of pamidronate disodium. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin red S (ARS) staining were assessed after treatment with pamidronate disodium (0, 0.1, 0.5, 1, 5, 10 µg/mL). Quantitative real-time polymerase chain reaction and western blotting specific for Wnt and ß-catenin signaling genes or proteins were performed after treatment with pamidronate disodium 0.5 µg/mL. Wnt3a was used to observe the osteogenic differentiation of BMMSCs during treatment with pamidronate disodium 0.5 µg/mL. RESULTS: As expected, pamidronate disodium 1, 5, and 10 µg/ml were unfavorable for BMMSC growth (P < .05), whereas 0.1 and 0.5 µg/mL did not affect BMMSC growth (P ≥ .05). BMMSCs treated with pamidronate disodium 0.5 µg/mL had lower ALP activity, ALP staining, and ARS staining (P < .05), and BMMSCs treated with low concentrations (<0.5 µg/mL) of pamidronate disodium had the same levels of ALP activity, ALP staining, and ARS staining as the control (0 µg/mL). Pamidronate disodium 0.5 µg/mL decreased the expression of genes and proteins involved in Wnt and ß-catenin signaling. BMMSCs with Wnt3a and pamidronate disodium 0.5 µg/mL had higher ALP activity, ALP staining, and ARS staining (P < .05). CONCLUSIONS: Pamidronate disodium inhibited Wnt and ß-catenin signaling, which controls osteogenic differentiation in BMMSCs. Wnt3a, a Wnt and ß-catenin signaling activator, reversed the negative effects caused by pamidronate disodium to salvage the osteogenic defect in BMMSCs.


Assuntos
Difosfonatos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteonecrose/etiologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Células Cultivadas , Humanos , Mandíbula , Osteogênese , Pamidronato
17.
World J Surg Oncol ; 15(1): 167, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854941

RESUMO

BACKGROUND: Lung cancer stem cells (CSCs) are considered to be the seed of lung cancer, and CD133 is a marker of lung CSCs. Here, we developed gefitinib-loaded poly(ethylene glycol) 2000-distearoylphosphatidylethanolamine nanomicelles with CD133 aptamers (M-Gef-CD133) to eliminate CD133+ lung CSCs. METHODS: M-Gef-CD133 was prepared using a lipid-film-based approach. The targeting and activity of M-Gef-CD133 towards lung CSCs were evaluated. RESULTS: M-Gef-CD133 were small (25 nm) and showed enhanced cytotoxic effect towards CD133+ lung CSCs compared with non-targeted M-Gef and gefitinib. Notably, M-Gef-CD133 could significantly reduce tumor sphere formation and the percentage of CD133+ lung CSCs, indicating that it possesses selective toxicity against CD133+ lung CSCs. CONCLUSIONS: The interaction of CD133 aptamers and CD133 shows promise in the delivery of gefitinib to CD133+ lung CSCs, and M-Gef-CD133 represents a promising treatment to target lung CSCs.


Assuntos
Antígeno AC133/antagonistas & inibidores , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinazolinas/farmacologia , Células A549 , Antígeno AC133/metabolismo , Animais , Antineoplásicos/uso terapêutico , Aptâmeros de Peptídeos/química , Gefitinibe , Humanos , Camundongos , Camundongos SCID , Nanopartículas/química , Células-Tronco Neoplásicas/metabolismo , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Quinazolinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Sci Food Agric ; 97(2): 686-692, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27145379

RESUMO

BACKGROUND: Prunus mume suppresses various diseases caused by inflammation response and exhibits antioxidant and free radical-scavenging activities. Therefore this study determined the effect of an aqueous P. mume (PM) extract in a mouse colitis model and investigated the value of biopolymer encapsulation, facilitating targeted delivery to the colon. Colitis was induced by administration of 30 g kg-1 dextran sulfate sodium to male BALB/c mice for 7 days prior to treatment with vehicle, 50 mg kg-1 PM extract or biopolymer-encapsulated PM extract, or 50 mg kg-1 sulfasalazine. RESULTS: Histological examination of the colon in BALB/c mice showed epithelial destruction and mucosal infiltration of inflammatory cells. These changes were attenuated in PM-treated mice, which had lower levels of inflammatory cytokines, cyclooxygenase 2 and immunoglobulins (IgA, IgM and IgE) compared with the vehicle-treated colitis group. The PM extract showed concentration-dependent radical scavenging and superoxide dismutase-like antioxidant activities. CONCLUSION: These results indicated that the effects of the PM extract on colitis were not influenced by biopolymer encapsulation and that this PM extract could be a potential therapeutic agent for inflammatory bowel disease. © 2016 Society of Chemical Industry.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Frutas/química , Fármacos Gastrointestinais/uso terapêutico , Doenças Inflamatórias Intestinais/dietoterapia , Extratos Vegetais/uso terapêutico , Prunus/química , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/uso terapêutico , Biopolímeros/química , Colo/imunologia , Colo/patologia , Sulfato de Dextrana , Manipulação de Alimentos , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/uso terapêutico , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/química , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos BALB C , Tamanho do Órgão , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Distribuição Aleatória , Aumento de Peso
19.
Mol Pharm ; 12(2): 463-73, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25581352

RESUMO

In the previous study, we have synthesized an amphiphilic copolymer of nanostructure-forming material and P-glycoprotein (P-gp) inhibitor, lysine-linked ditocopherol polyethylene glycol 2000 succinate (PLV2K). The cytotoxicty in vitro and anticancer efficacy in vivo after intravenous administration of DOX-loaded PLV2K micelles (PLV2K-DOX) was found more effective than DOX solution (DOX-Sol). However, its performance and mechanism on oral absorption of doxorubicin are not well understood yet. PLV2K-DOX are spherical micelles with a narrow size distribution of 20.53 ± 2.44 nm. With an in situ intestinal perfusion model, the intestinal absorption potential of PLV2K-DOX was evaluated in comparison with DOX-Sol. PLV2K-DOX was specifically absorbed in duodenum and ileum sites of rats after oral administration. The intestinal absorption rate (Ka) of PLV2K-DOX is 3.19-, 1.61-, and 1.80-fold higher than that of DOX-Sol in duodenum, jejunum, and ileum, respectively. In Caco-2 uptake studies, PLV2K-DOX micelles significantly improve the internalized amount of DOX by P-gp inhibition of free PLV2K copolymer and endocytosis of DOX-loaded nanoparticles. Moreover, PLV2K-DOX micelles improve the membrane permeability of DOX by multiple transcytosis mechanisms, including caveolin-, clathrin-dependent, and caveolin-/clathrin-independent transcytosis in Caco-2 transport studies. However, the transepithelia electrical resistance (TEER) of Caco-2 cellular monolayer is not changed, suggesting no involvement of paracellular transport of PLV2K-DOX. In vivo pharmacokinetics in rats following oral administration demonstrated that PLV2K-DOX demonstrates higher AUC (5.6-fold) and longer t1/2 (1.2-fold) than DOX-Sol. The findings suggest the new PLV2K micelles might provide an effective nanoplatform for oral delivery of anticancer drugs with poor membrane permeability and low oral bioavailability.


Assuntos
Doxorrubicina/química , Doxorrubicina/metabolismo , Lisina/química , Polietilenoglicóis/química , Polímeros/química , Tocoferóis/química , Células CACO-2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas
20.
Mol Pharm ; 12(7): 2337-51, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26024817

RESUMO

In order to improve oral bioavailability of tacrolimus (FK506), a novel poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-ß-cyclodextrin amphiphilic copolymer (CD-PVM/MA) is developed, combining the bioadhesiveness of PVM/MA, P-glycoprotein (P-gp), and cytochrome P450-inhibitory effect of CD into one. The FK506-loaded nanoparticles (CD-PVM/MA-NPs) were obtained by solvent evaporation method. The physiochemical properties and intestinal absorption mechanism of FK506-loaded CD-PVM/MA-NPs were characterized, and the pharmacokinetic behavior was investigated in rats. FK506-loaded CD-PVM/MA-NPs exhibited nanometer-sized particles of 273.7 nm, with encapsulation efficiency as high as 73.3%. FK506-loaded CD-PVM/MA-NPs maintained structural stability in the simulated gastric fluid, and about 80% FK506 was released within 24 h in the simulated intestinal fluid. The permeability of FK506 was improved dramatically by CD-PVM/MA-NPs compared to its solution, probably due to the synergistic inhibition effect of P-gp and cytochrome P450 3A (CYP3A). The intestinal biodistribution of fluorescence-labeled CD-PVM/MA-NPs confirmed its good bioadhesion to the rat intestinal wall. Two endocytosis pathways, clathrin- and caveolae-mediated endocytosis, were involved in the cellular uptake of CD-PVM/MA-NPs. The important role of lymphatic transport in nanoparticles' access to the systemic circulation, about half of the contribution to oral bioavailability, was observed in mesenteric lymph duct ligated rats. The AUC0-24 of FK506 loaded in nanoparticles was enhanced up to 20-fold compared to FK506 solutions after oral administration. The present study suggested that the novel multifunctional CD-PVM/MA is a promising efficient oral delivery carrier for FK506, due to its ability in solubilization, inhibitory effects on both P-gp and CYP 3A, high bioadhesion, and sustained release capability.


Assuntos
Portadores de Fármacos/química , Maleatos/química , Polietilenos/química , Polímeros/química , Tacrolimo/administração & dosagem , Tacrolimo/farmacocinética , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Citocromo P-450 CYP3A/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Tacrolimo/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA